Posts

Statistical considerations for the design of randomized, controlled trials for probiotics and prebiotics

By Prof. Daniel Tancredi, UC Davis, USA

The best evidence for the efficacy of probiotics or prebiotics generally comes from randomized controlled trials. The proper design of such trials should strive to use the available resources to achieve the most informative results for stakeholders, while properly accounting for the consequences of correct and incorrect decisions. It is crucial to understand that even well-designed and -executed studies cannot entirely eliminate uncertainty from statistical inferences. Those inferences could be incorrect, even though they were made rigorously and without any procedural or technical errors. By “incorrect”, I mean that the decisions made may not correspond to the truth about those unknown population parameters. Those parameters involve the distribution of study variables in the entire population, but our inferences are inductive and based on just the fraction of the population that appeared in our sample, creating the possibility for discordance between those parameters and our inferences about them. Although rigorous statistical inference procedures can allow us to control the probabilities of certain kinds of incorrect decisions, they cannot eliminate them.

For example, consider a two-armed randomized controlled trial designed to address a typical null hypothesis, that the probability of successful treatment is the same for the experimental treatment as for the comparator. Depending on the analytical methods to be employed, that null hypothesis could also be phrased as saying that the difference in successful treatment probabilities between the two arms is zero or that the ratio of the successful treatment probabilities between the two groups is one. Suppose the study sponsor has two possible choices regarding the null hypothesis, either to reject it or fail to reject it. (The latter choice is colloquially called “accepting the null hypothesis”, but that is a bit of an overstatement, as the absence of evidence for an effect in a sample typically does not rise to the level of being convincing evidence for the absence of an effect in the population.)

With these two choices about the null hypothesis, there are two major types of “incorrect decisions” that can be made: the null hypothesis could be true for the population but the study data led to a decision to reject the null hypothesis, a result conventionally called a “Type-1” error. Or the null hypothesis could be false for the population but the study data led to a decision not to reject the null hypothesis, conventionally called a “Type-2” error. Conversely, there are also two potentially correct decisions. One could fail to reject the null hypothesis when the null hypothesis is true for the population, a so-called “true negative”, or one could reject the null hypothesis when the null hypothesis is not true, a so-called true positive.

The consequences of these four different decision classifications vary from one stakeholder to another, and thus it is unwise to rely solely and simply on commonly used error probabilities when planning studies. The wiser approach is to set the error probabilities so that they properly account for the relative gains and losses to a stakeholder that arise from correct and incorrect decisions, respectively. From long experience assessing the design of clinical trials for probiotics and prebiotics, I recommend that stakeholders in the design phase of studies give thought to the following three statistical considerations.

Pay attention to power

Power is the probability of avoiding a type-2 error—in other words, under the condition that an assumed true effect exists in a study population and that the type-1 error has been controlled at a given value, power is computed of the probability of avoiding the incorrect decision to fail to reject the null hypothesis. Standard practices are to set the type-1 error at 5% and to determine a sample size that achieves 80% power for an assumed alternative hypothesis, one stating that the true effect is of a specific given magnitude, one corresponding to a so-called meaningful effect size. That effect size is typically called a ‘minimum clinically significant difference’ (MCSD) or something similar, because ideally the assumed effect size would be the smallest of the values that would be clinically important, although as a practical matter — because the higher the magnitude of the effect size, the lower the sample size requirements and thus the better the chance of the study being perceived as “affordable” to study sponsors — the MCSDs used to power studies are often larger than some of the values that would also be clinically significant. Nevertheless, let’s consider what it means for the sponsor to accept that the study should be powered at merely the conventional 80% level. Under the assumptions that the true effect in the population is the MCSD and that the study achieves its target sample size, a sponsor of a study that has only 80% power is taking a 1-in-5 chance that the sample results would not be statistically significant (and that the null hypothesis would fail to be rejected).  Such an incorrect decision could have major adverse implications for the sponsor (and for potential beneficiaries of the intervention), particularly given the investments that have been made in the research program and the implications the incorrect decision could have for misinforming future decisions regarding the specific intervention and indeed related interventions.  A 20% risk may not be worth taking.

All other considerations being equal, the risk of a type-2 error could be lowered by increasing the sample size. Under regular asymptotic assumptions that generally apply, increasing the target sample size by about one-third would cut a 20% type-2 error risk in half, to 10%. Increasing the target sample size by two-thirds reduces it all the way to 5%.

Define the true minimum clinically significant effect size applicable to your study

Another important question is where to set the minimum clinically significant effect. Often that effect is based on prior studies without any adjustment—but this can neglect key considerations. Prior effects of an intervention are typically biased in a direction that overstates the benefits of the intervention, especially if the intervention emerged from smallish early-phase studies. More fundamentally, from the perspective of decision theory the estimated effects seen in prior studies do not specifically address what could truly be the minimum clinically meaningful effect when one considers the possible benefits, risks, and costs of the intervention. Probiotics and prebiotics are typically relatively benign interventions in terms of adverse events, so it could be that even more modest favorable impacts on health than were seen in prior studies are still worthwhile.

Powering your study based on what truly is a minimal clinically meaningful effect may lead to a better overall strategy for optimizing net gains, while giving the intervention an appropriately high chance of showing that it works. Although the smaller the assumed effect size, the larger the required sample size needed to detect it (all other factors being the same), a proper assessment of the relative risks and benefits of the intervention and, also, of correct and incorrect decisions about the intervention, may provide a strong basis for making that investment.

In addition, there is another important but often overlooked aspect when deciding on what is a worthwhile improvement. We frequently turn to clinicians to determine what would be a worthwhile improvement, and it is natural for a clinician to address that question by considering what would be a meaningful improvement for a patient who responds to the intervention. Keep in mind, though, that an intervention could be worthwhile for a population if it achieves what would be a worthwhile improvement for a single patient–say, a mean improvement of 0.2 SD on a quality-of-life scale—in only a fraction of the patients in the overall population, say 50%. There are many conditions for which having an intervention that works for only large subsets of the population could be valuable in improving the population’s overall health and wellness. Using this example, where the worthwhile improvement for an individual is 0.2 SD and the worthwhile responder percentage is 50%, then the worthwhile improvement that should be used to power the study would be 0.1 SD, which is equal to (0.2 SD * 50%) + (0 SD * 50%), with the latter product quantifying an assumed absence of a benefit in the non-responders. What should be gleaned from this example is that the minimum clinically important effect for a population is typically less than the minimum clinically important effect for an individual. The effect used to power the study should be the one that applies to the relevant population. Again, that effect should be chosen so that it balances benefits relative to the costs and harms of the intervention while accounting also for variation in whether and how much individuals in the population may respond. When study planners fail to account for this variation, the result is a study that is underpowered for detecting meaningful population-level effects.

Improving the signal-to-noise ratio

In general, effect sizes can be expressed analogously to a mean difference divided by a standard error, and thus can be thought of as a signal-to-noise ratio. Sample size requirements depend crucially on this signal-to-noise ratio. Typically, standard errors are proportional to outcome standard deviations and inversely proportional to the square root of the sample size. The latter is key because it means that in case an expected signal would be cut in half, the noise would also need to be cut in half to maintain the signal-to-noise ratio, which means that if you cannot alter the outcome standard deviation, then you would need to quadruple the sample size. This also applies in the opposite direction, happily: if you can double the expected signal-to-noise ratio, you would only need one-fourth the sample size to achieve the desired power, all other things being equal.

Signal-to-noise ratios can be optimized by designing a trial for a judiciously restricted target population (of potential responders) and by using high-quality outcome measurements for the trial to reduce noise. Although research programs may eventually aim to culminate in large pragmatic trials that show meaningful improvements associated with an intervention even in populations of individuals with wide variations in their likelihood and amount of potential response, it is generally wise up to that stage in a research program to focus trials so that they give accurate information as to whether the intervention works in populations targeted for being more apt to be responsive to an intervention. To do that, for example, the trial methods should include accurate assessments for whether potential recruits are currently experiencing, say, symptoms from whatever condition the intervention is intended to address and whether the recruit would be able to achieve the desired dose of whatever the trial assigns to them. For a truly beneficial intervention, it is easier to continue a research program advancing the development of that intervention if the intervention sustains a consecutive string of “true positive” results from when it began to undergo trials, avoiding a potentially fatal type-2 error (“false negative”).

Careful attention to the above considerations can lead to better trials, ones that combine rigor and transparency with a tailored consideration of the relative costs and benefits of potentially fallible statistical inferences, so that the resulting evidence is as informative as possible for stakeholder decision-making.

Probiotic Administration in Preterm Infants: Scientific Statement

Board of Directors, International Scientific Association for Probiotics and Prebiotics

in collaboration with

Dr. Geoffrey Preidis MD PhD, Pediatric Gastroenterology, Hepatology & Nutrition

Prof. Andi L Shane MD MPH MSc, Pediatric Infectious Diseases

A recent report of a fatality in an extremely premature infant recipient of a probiotic product has resulted in a warning letter from the United States Food & Drug Administration (FDA) to healthcare practitioners about probiotic supplementation in preterm infants and a warning letter to the probiotic product manufacturer.

Publicly available information suggests that this fatality was the direct consequence of bacteremia resulting from ingestion of the probiotic organism Bifidobacterium longum subsp. infantis delivered in medium chain triglyceride oil. This situation differs from case reports of adverse events that resulted from extrinsic probiotic product contamination (1, 2). This is an important distinction, as the potential risks and mitigation strategies differ between etiologies. As complete details of this most recent fatality have not been released, specific factors that may have contributed to the adverse outcome are unknown. However, it is worth considering the context of this case report within the broader literature available on probiotic use in this population, including the wealth of data available on sepsis incidence.

Evidence from systematic reviews

Premature infants, especially those of <32 weeks gestation and with a birth weight <1500 g, are a vulnerable population at significant risk of morbidity and mortality.  Necrotizing enterocolitis (NEC) is highly prevalent (5-10% incidence) among very preterm infants, with mortality rates of 20-30% and high morbidity among survivors, including short gut syndrome, parenteral nutrition-associated liver disease, and neurocognitive delay.

A large body of literature exists on the use of probiotics in hospitalized preterm infants, with particular focus on the prevention of NEC. At least 85 randomised clinical trials (RCTs) (3) have been conducted to evaluate the use of probiotics in preterm infants for the prevention of diseases associated with prematurity, and a number of systematic reviews with meta-analyses have analysed these data in recent years. Most RCTs conducted in the neonatal intensive care unit (NICU) designate sepsis as one of the main outcome measures.

The most recent meta-analysis was published online October 2 in JAMA Pediatrics (3). This study included 106 trials on probiotic, prebiotic, synbiotic and lactoferrin interventions for either preterm infants <37 weeks and/or those with low birth weight (<2500 g). Administration of probiotics containing multiple strains were found to be most effective in the reduction of all-cause mortality (31% reduction), with a 62% decrease in incidence of severe NEC compared to placebo (moderate and high certainty evidence). Single strain probiotics combined with lactoferrin provided greatest efficacy in the reduction of late-onset sepsis incidence (67% risk reduction with moderate certainty evidence). It was noted that none of the included studies reported cases of probiotic-induced sepsis.

Other authors including groups from the Cochrane Collaboration, American Gastroenterological Association (AGA) and the European Society for Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) have found similar results, and studies can be reviewed here:

Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants – Sharif, S – 2023 | Cochrane Library

Probiotics Reduce Mortality and Morbidity in Preterm, Low-Birth-Weight Infants: A Systematic Review and Network Meta-analysis of Randomized Trials – Gastroenterology (gastrojournal.org)

Probiotics for Preterm Infants: A Strain-Specific Systematic… : Journal of Pediatric Gastroenterology and Nutrition (lww.com)

No meta-analysis has attributed increased risk of sepsis to probiotic use in preterm infants – rather, in many cases a protective effect (or a trend toward protection) was reported. However, it is important to acknowledge the real but rare risk of probiotic-induced bacteremia in this population. In a recent review of case reports of probiotic-associated invasive infections in children, probiotic-induced bacteremia in premature infants were found to have resolved in most cases with use of effective antimicrobial therapy (4).

With data collected on over 10,000 preterm infants, substantial benefits demonstrated and a low level of risk identified, promise to improve outcomes in preterm infants who receive a probiotic product currently exists. Based on the evidence currently available, hospitals and NICUs across the globe have already adopted practices relating to probiotic use in preterm infants, some with significant health impacts (5, 6).

Risk benefit analysis and considerations for healthcare implementation

Further work needs to be done to support probiotic administration in the NICU. Collaborative efforts include recommendations for practical steps to improve probiotic product quality assurance specifically for NICU use, published in July 2023 in JAMA Pediatrics (7).

It is important to note that few (or possibly no) effective interventions are without an adverse event profile, and probiotics are no exception. Even food has a safety standard of reasonable certainty and on a regular basis, individuals suffer fatal foodborne infections. When considering the clinical indications for any intervention for an individual patient or a population of individuals, a thorough comparison of all available data on both the potential risks and the potential benefits is warranted.

The American Gastroenterological Association (8) and other major societies (including ESPGHAN and the World Gastroenterology Organisation) (9, 10) endorse probiotic products for the prevention of NEC among preterm low birth weight infants. The societies’ guidelines agree that the recommendation to use probiotics is conditional. Conditional recommendations are sensitive to patients’ values and preferences, and to the guideline panel’s perception of risk-benefit balance.  However, the recent FDA letter does not acknowledge these recommendations and further, recommends against probiotic use in preterm infants despite the robust efficacy data. With interventions such as probiotic administration, ideally shared clinical decision-making with patient and clinician would ensue. Regulatory warnings inform the risk-benefit calculation but typically do not invalidate a clinical recommendation.

Summary

  • Probiotic administration to preterm infants has been demonstrated to significantly reduce the risk of NEC, sepsis and death in large systematic reviews with meta-analyses.
  • Meta-analyses have not identified significant adverse events or safety concerns, although rare case reports have documented sepsis attributed to probiotics.
  • Stringent manufacturing standards are recommended for probiotics in vulnerable populations such as preterm infants.
  • Standardized comprehensive safety reporting across probiotic intervention studies is needed, along with funding for the conduct of long term studies.
  • The risks and benefits of probiotic administration should be considered in both the specific population and individual patients, with regulatory frameworks to enable implementation.
  • More information about this fatality should be immediately released so healthcare professionals and researchers can learn from this experience and continue to provide optimal evidence-based patient care.

To inquire about expert academic physicians available for media comment, please contact ISAPP’s Executive Director, Marla Cunningham, at marla@nullisappscience.org

See also:

NEC Society: Statement on FDA Warning of Probiotics in Preterm Infants

References

(1) Vallabhaneni S, Walker TA, Lockhart SR, et al. Notes from the field: Fatal gastrointestinal mucormycosis in a premature infant associated with a contaminated dietary supplement–Connecticut, 2014. MMWR Morb Mortal Wkly Rep. 2015;64(6):155-156.

(2) Bizzarro MJ, Peaper DR, Morotti RA, Paci G, Rychalsky M, Boyce JM. Gastrointestinal Zygomycosis in a Preterm Neonate Associated With Contaminated Probiotics. Pediatr Infect Dis J. 2021;40(4):365-367.

(3) Wang Y, Florez ID, Morgan RL, et al. Probiotics, Prebiotics, Lactoferrin, and Combination Products for Prevention of Mortality and Morbidity in Preterm Infants: A Systematic Review and Network Meta-Analysis. JAMA Pediatr. 2023 Oct 2:e233849.

(4) D’Agostin M, Squillaci D, Lazzerini M, et al. Invasive Infections Associated with the Use of Probiotics in Children: A Systematic Review. Children (Basel). 2021 Oct 16;8(10):924.

(5)  Rath CP, Athalye-Jape G, Nathan E, et al. Benefits of routine probiotic supplementation in preterm infants. Acta Paediatr. 2023 Jul 28.

(6) Bui A, Johnson E, Epshteyn M, Schumann C, Schwendeman C. Utilization of a High Potency Probiotic Product for Prevention of Necrotizing Enterocolitis in Preterm Infants at a Level IV NICU. The Journal of Pediatric Pharmacology and Therapeutics 2023;28(5):473–475.

(7)  Shane AL, Preidis GA. Probiotics in the Neonatal Intensive Care Unit-A Framework for Optimizing Product Standards. JAMA Pediatr. 2023 Sep 1;177(9):879-880.

(8) Su GL, Ko CW, Bercik P, et al. AGA Clinical Practice Guidelines on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology. 2020 Aug;159(2):697-705.

(9) WGO Practice Guideline: Probiotics and Prebiotics. Available from: https://www.worldgastroenterology.org/guidelines/probiotics-and-prebiotics

(10) van den Akker CHP, van Goudoever JB, Shamir R, et al. Probiotics and Preterm Infants: A Position Paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics. J Pediatr Gastroenterol Nutr. 2020 May;70(5):664-680.

Are the microbes in fermented foods safe? A microbiologist helps demystify live microbes in foods for consumers

By Dr. Gabriel Vinderola, PhD,  Associate Professor of Microbiology at the Faculty of Chemical Engineering from the National University of Litoral and Principal Researcher from CONICET at the Dairy Products Institute (CONICET-UNL), Santa Fe, Argentina.

Since very early in my career I was drawn to science communication. I feel that rather than just producing my own results, silently in my lab, I can extend the reach of the science by amplifying other people’s work. At least in the southern cone where budgets for research have been always limited, science communication is a way to be active in science.

Before the pandemic I used my Instagram account mostly to share personal moments with my circle of family and friends. But when the COVID-19 pandemic hit, I saw interest in fermented foods skyrocket. I started sharing tips about how to prepare fermented foods, telling the science behind them, separating myths from facts, making Instagram Live videos with fermentationists, nutritionists, pediatricians and gastroenterologists, and I turned my personal Instagram account into a public one with an outreach of more than 100,000 followers (@gvinde), from Mexico down to Argentina.

During the pandemic, people were largely homebound and concerned about staying healthy.  The idea of healthy food to keep a diverse gut microbiome that had the potential to enhance our gut and respiratory immune systems against coronavirus really resonated with people. I even had the chance to participate in several radio and TV programs discussing these topics as well as making yoghurt, kefir, kombucha, sauerkraut and sourdough bread at home. I saw that people had the time to devote part of their days at home to keep these communities of microbes “cooking” for them. But these activities revealed to me that more people than I realized did not know that we can eat microbes in a safe way and that they may actually be good for us.

In my encounters, I found much confusion about fermented dairy products. People believe that dairy products must be kept refrigerated, but at the same time they see ultrapasteurized milk, powdered milk or hard cheeses marketed at room temperature. People find it difficult to understand why pasteurized milk should go in the refrigerator but not unopened ultrapasteurized milk.

Some hesitancy around bacterial safety exists because Argentina leads the world in annual cases of Uremic Hemolitic Syndrome (UHS), a life-threatening condition for children, especially those under the age of 5 years, caused by shiga-toxin producing Escherichia coli. Almost 400 children get sick in Argentina every year due to UHS. Among other recommendations, pediatricians tell parents not to offer their children unpasteurized dairy products. This leads to the the most common question I receive on Instagram from parents worried about yoghurt safety: Is yoghurt pasteurized?  “No!” I emphasize. “Yoghurt is not pasteurized, but it is made out of pasteurized milk. In fact, yoghurt has viable bacteria.” And this is when the panic begins.

If yoghurt has live bacteria, then can’t any bacteria grow there, even the bacteria responsible for UHS? If I leave yoghurt outside the refrigerator or in my car too long, won’t this make it more likely that the UHS bacteria will grow?” This is where I try to use an army of arguments to communicate science in the simplest possible way, from more philosophical to more science-based facts.

The first thing I share is that fermentation was invented well before refrigerators. Fermentation was used by people to preserve foods, for periods well longer than the time it takes to take the yoghurt from the supermarket to make it home or than the time a yoghurt sits in the backpack of my child waiting for school lunchtime. I once posted that I ate a yoghurt that was left in my car for one whole day. That generated a lot of debate on social media!

Then I inform them that the fermentation process to make yoghurt causes the pH to drop well below values needed for pathogens to grow. That it is highly unlikely that a pathogen can enter a well-sealed yoghurt, and in the event that it would be possible, the acidic conditions would impair the pathogen from growing to a level that could be life-threating.

People not only worried about yoghurts bought in the supermarket, well-sealed and made under the strictest safety conditions in industry. In the pandemic many parents learned how to make yoghurt at home, and they wanted to know how safe it is. In these cases, I advised the following to assure their homemade yogurt was safe: use a yoghurt from the supermarket to launch your own fermentation, use pasteurized milk, use good quality water to wash your kitchen devices, and wash your hands properly. In addition you can use a domestic pHmeter or pH indicators to make sure pH dropped below 4.5. In a successful fermentation – after about 1 gallon sitting 8-12 hours at a warm temperature – the fluid milk will transform into a gel. If not, you should discard it.

If these arguments are not enough, then I draw their attention to the well-respected product milk kefir. At least in this region, kefir is surrounded by a halo of “something that is good, no matter what”. People are familiar with the process of fermenting milk kefir at room temperature for a full day. So I make this comparison: commercial yoghurt is fermented for 6 hours, then it is refrigerated and taken to the supermarket. If you are OK letting milk kefir ferment for a whole day, shouldn’t yogurt sitting without refrigeration for a few more hours be harmless enough? It likely would only get more acidic because bacteria will resume fermentation. This fermented food would not become a life-threatening food in just a couple of hours. If milk kefir does not in 24 hours, why should yoghurt?

To further argue, I comment that kombucha is fermented at room temperature for 10 days, sauerkraut for 2 weeks and kimchi for several months. And they are all consumed with their microbes alive. They key is that the microbes that flourish make the environment inhospitable to pathogens.

Still I feel that there is a lot of uncertainty among consumers about the safety of fermented foods and this is may be an obstacle to making them more popular. Scientists must meet the challenge to communicate to lay audiences about how to make fermented foods safely at home and how to store them so they are safe. Nothing is ever 100% safe, but the small risks associated with fermented foods are greatly outweighed by the enjoyment of making and consuming fermented foods.

 

Additional reading:

Suggestions for Making Safe Fermented Foods at Home

2022 TEDx talk

2021 Teaching how to make kefir on TV during the pandemic

2019 participation in Argentina’s most famous TV show, featuring the same host for more than 50 years non-stop

Pasteurized Akkermansia muciniphila as a postbiotic: EFSA approval and beyond

By Prof. Seppo Salminen, University of Turku, Finland

Earlier this year, the European Food Safety Authority (EFSA) delivered an opinion that heat-treated Akkermansia muciniphila is safe for use as a novel food in the European Union. EFSA described A. muciniphila as a “well‐characterised non‐toxin producing, avirulent microorganism that has been reported as part of normal gut microbiota” and determined based on a literature review that its safety is adequate for use as a food supplement or in foods for special medical purposes, at a specified maximum dose.

ISAPP connected with three individuals from A-Mansia Biotech, the company that initiated the EFSA request: Prof. Willem M. de Vos and Prof. Patrice D. Cani, as well as the company CEO Michael Oredsson. They jointly answered some questions on their EFSA success and plans for the future.

Originally, what led you to test whether the pasteurized form of the live microbe might be able to confer a health benefit?

We first noticed that killing Akkermansia by using autoclaving (121°C 20°C) completely abolished the beneficial effects of Akkermansia. However, we wanted to test whether a milder procedure (i.e. pasteurization) could keep some structures of the outer membrane of Akkermansia intact and therefore still able to interact with the host. We knew that several other classical probiotics (types of lactobacilli) partly retained their effects after pasteurization. Our surprise was to see that pasteurization successfully maintained the effects of Akkermansia compared to the live form, but even increased its efficacy.

Pasteurised Akkermansia has now been extensively studied for safety and health effects. Does this make it the first real postbiotic, as defined by ISAPP?

If we are accepting the ISAPP definition proposed in 2021, we can answer yes to this question. Prof. Cani in his scientific capacity believes indeed that the product (pasteurized Akkermansia) is unique and can fall under this definition. Whether A-Mansia will be positioning the pasteurized Akkermansia as a postbiotic according to that definition is still to be discussed.

Pasteurised Akkermansia has been demonstrated to control gut barrier and reduce inflammation associated with fat storage and obesity – will we see a product that helps in weight loss/control?

Akkermansia is clearly playing a major role by tackling the gut barrier dysfunction which is the root cause of the different metabolic problems mentioned here (i.e., inflammation, fat storage, liver/fat tissue inflammation) and they are all connected to better energy expenditure/oxidation when a lower inflammation/insulin resistance is observed. Therefore, pasteurized Akkermansia should help to maintain a healthy weight and abdominal fat. A product focusing on a better weight management is currently under development at A-Mansia.

Is the next step to apply for an EU health claim?

All the current human investigations and studies at our company are aiming at fulfilling future EU health claims.

It took two years to get the acceptance for the safety of inanimate pasteurised Akkermansia – what do you think of this timeframe for safety assessment?

This is perfectly in line with what the EFSA was expecting, although it was a few months delayed with the COVID-19 crisis. The assessment was very clear, smooth and well managed by the EFSA.

In general, what do you think the future holds for postbiotics as food ingredients?

We are entering into a new era, first with next-generation beneficial bacteria, and Akkermansia as one of the most studied (if not the most studied). The pasteurized form is so active, stable, and easy to use that the postbiotic era, as led by this example, is a novel and innovative manner of targeting the microbiome for improving/maintaining health.

 

As the science on health benefits for similar postbiotic substances continues to advance, we may see more ingredients qualifying as true postbiotics. More products are likely to follow a similar path, considering the practical advantages of delivering non-living substances to consumers.

 

ISAPP board members give a scientific overview of synbiotics in webinar

Many kinds of products are labeled as synbiotics – but how do they differ from each other? And do they all meet the scientific criteria for synbiotic ingredients?

To demystify the science of synbiotics – including ISAPP’s definition published in 2020 – ISAPP is holding a free webinar: Synbiotics: Definitions, Characterization, and Assessment. Two ISAPP board members, Profs. Bob Hutkins and Kelly Swanson, present on the implications of the synbiotic definition for science and industry. They clarify the difference between ‘complementary’ and ‘synergistic’ synbiotics and cover the basics of meeting the criteria for synbiotic efficacy and safety. One challenge is learning when a synbiotic is required to have demonstrated both selective utilization of the microbiota in the same study that measures the health outcome. A Q&A is scheduled for the last 20 minutes of the webinar.

This webinar is for scientists, members of the public, and media who want a scientific overview on synbiotics as they appear in more and more consumer products.

The live webinar was broadcast on Friday, January 28th, 2022, from 10:00 am – 11:10 New York (Eastern) time.

Find the webinar recording here.

Scientists looking at a bottle of probiotic supplements.

Current issues in probiotic quality: An update for industry

By Dr. Mary Ellen Sanders, ISAPP, Dr. Kit Goldman, USP, Dr. Amy Roe, P&G, Dr. Christina Vegge, Dr. Jean Schoeni, Eurofins

With probiotic dietary supplement use growing globally and an increasing array of products on the market, probiotic quality is an issue of perpetual relevance to industry. Best practices for producing high-quality probiotics change frequently, making it important for companies to stay informed.

ISAPP convened a webinar on this topic, available to ISAPP members only. The webinar took place November 16, 2021, and was hosted by Executive Science Officer, Dr. Mary Ellen Sanders. Speakers focused on the activities of the United States Pharmacopoeia (USP), a non-profit organization based in the US and operating globally, which for the past 200 years has worked to improve public health through development of quality standards for medicines, dietary supplements and foods. In 2017 USP formed an Expert Panel on probiotics.

Dr. Kit Goldman, Sr Director, Dietary Supplements and Herbal Medicines, USP, spoke about the origin of USP and the USP activities related to probiotic quality. USPs expert volunteers have determined the necessary parameters for probiotic quality standards, which include tests for identification, assay/enumeration and contaminants, and have created standards for a number of probiotic species/strains. In the course of doing so, the Probiotics Expert Panel identified specific areas where more information was needed to fully understand issues related to probiotic quality. This led to the formation of sub-teams to consider aspects of probiotic identification, enumeration and safety.

Dr. Amy Roe, Principal Scientist at P&G, spoke on appropriate regulatory requirements for probiotic safety. Currently, there is no global harmonization on the requirements for establishing probiotic safety for use in foods and supplements. Although ‘history of safe use’ has been central to safety assessments for many current probiotic species, probiotic manufacturers are increasingly seeking to use new strains, species, and next-generation probiotics; justification of safety based on a significant history of use may be challenged. USP and other stakeholders are looking to develop best practices guidelines for assessing the quality and safety of probiotics. A current initiative of the USP seeks to provide expert advice specific to safety considerations for probiotics through reviewing global regulatory guidelines, evaluating appropriateness of traditional animal toxicology studies for studying the safety of probiotics, highlighting the importance of proper manufacturing practices with regard to final product safety, and outlining of essential parameters of a comprehensive safety assessment for a probiotic.

Dr. Jean Schoeni, Fellow at Eurofins, spoke on comparing probiotic enumeration methods. One challenge faced by the USP Probiotics Expert Panel is how to compare the increasing number of probiotic enumeration methods appearing in monograph submissions. A sub-team of the panel developed a solution that combines APLM (Analytical Procedures Lifecycle Management – a streamlined approach for determining the method’s fitness for intended use) with TI (tolerance interval) calculations. Schoeni encouraged companies to adopt this solution, highlighting tools that have been provided to the probiotics industry through publication of the sub-team’s work.

Dr. Christina Vegge spoke on quantification of multi-strain blends. For probiotic products comprising multiple strains, the viable numbers of each strain in these products would ideally be quantified. However, reliance on plate count methods creates analytical challenges regardless of whether the quantification of viable numbers of each strain in the blend is conducted prior to or after blending. Further challenges arise when addressing the reductions in potency over shelf life of the product. For multi-strain products, plate count procedures are insufficient—and currently no official guideline or general best practice exists to resolve this situation. Therefore, the USP Probiotics Expert Panel wants to conduct an explorative study to examine non-culture based technologies to quantify the viable composition of multi-strain blends.

A recording of this webinar is available for ISAPP industry members only. Please see here and email info@nullisappscience.org for the password to access this page.

Publications (open access) from USP Probiotics Expert Panel:

Jackson et al. Improving End-User Trust in the Quality of Commercial Probiotic Products. Front Microbiol. 2019 Apr 17;10:739.  doi: 10.3389/fmicb.2019.00739.

Weitzel MLJ, et al. Improving and Comparing Probiotic Plate Count Methods by Analytical Procedure Lifecycle Management. Front Microbiol. 2021 Jul 12;12: 693066. doi: 10.3389/fmicb.2021.693066.

 

 

Can dietary supplements be used safely and reliably in vulnerable populations?

By Dr. Greg Leyer, Sr. Director – Scientific Affairs, Chr. Hansen, Inc., Madison, WI and Prof. Dan Merenstein, Department of Family Medicine, Georgetown University Medical Center, Washington DC

What is it that doctors look for when recommending or prescribing therapies to patients? If it is a drug, a supplement, a new diet, or even a new exercise regimen, they look for safety and efficacy. There are of course other things to consider, including cost, ease of administration, and patient compliance, among others. But safety and efficacy are their foremost concerns.

A recently published clinical report from the American Academy of Pediatrics (AAP) (Poindexter 2021) examined the evidence for probiotics to prevent morbidity and mortality in preterm infants. They concluded that probiotics could not be recommended. This differs from conclusions of the American Gastroenterological Association (AGA) (Su et al. 2020), which recommended specific probiotic strains for preterm (less than 37 weeks gestational age) and low birth weight infants. The AAP report also differs from the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) (Van den Akker et al. 2020), which recommends specific strains for this use, although their recommendations are not fully aligned with AGA’s (see What’s a Clinician to do When the Probiotic Recommendations from Medical Organizations Do Not Agree?).

The AAP report does a thorough job of reviewing data on use of probiotics in the NICU, including conflicting studies, lack of confirmatory studies of efficacious strains, and safety and cross contamination inside the NICU. However, the overriding theme of the report is “clinicians must be aware of the lack of regulatory standards for commercially available probiotic preparations manufactured as dietary supplements and the potential for contamination with pathogenic species.” Therefore, at the heart of the AAP failure to recommend probiotics is the concern that the quality of available products is insufficient. Because of the absence of a pharmaceutical-grade probiotic product for use in the United States, they posit, they cannot recommend usage. It is noteworthy that the trials performed on premature infants resulting in multiple conclusions of safety and efficacy have thus far utilized probiotic products manufactured as dietary supplements.

Probiotics can be marketed as drugs if they follow that regulatory pathway, but generally in the US they are sold under the regulatory classification of dietary supplements. Is the AAP correct that no dietary supplement is of sufficient quality to recommend for use in preterm infants?

Quality of probiotic dietary supplement probiotics. Dietary supplements were a category of product developed to supplement the diet of the generally healthy population, not to treat or prevent disease. In practice this is an important distinction, because while the safety standard is high for dietary supplements for healthy individuals (see comments by food safety expert Jim Heimbach here), such supplements do not need to be established as safe for patient populations. But in the case of probiotics, many clinical trials have evaluated safety and efficacy for prevention or treatment of disease, more aligned with drug uses. Yet probiotic products supported by these data are not marketed in the US as drugs.

It is a common misperception that dietary supplements are “not regulated”. However, the FDA has clear good manufacturing practices (GMP’s) and regulations dedicated to dietary supplement manufacturing.  The onus is on manufacturers to establish appropriate product specifications based on intended use and risk. Reputable manufactures establish rigorous purity, strength, and identity quality standards consistent with the intended population and sufficient for that use. Products intended for infants, including premature infants, should be manufactured under quality standards more rigorous than those intended for a healthy adult population. For example, Chr. Hansen bases the enhanced specifications for products aimed at infants, and preterm infants, on elements of Codex standards for infant formula, amongst other stringent microbiological criteria. This would include manufacturing the probiotic strain to an “infant” grade, employing stricter environmental monitoring, sanitation, and airflow control throughout the process, careful selection of raw ingredients for infant compatibility, and enhanced testing and purity standards using validated methods at every step. The internal manufacturing standards that Chr. Hansen applies for products intended for infants, and preterm infants, are much stricter than typical dietary supplement standards, and are appropriate for their intended use.

Therefore, there are high quality, safe probiotic products produced under dietary supplement regulations even though such products do not carry any label statement claiming this added level of quality. However, products sourced for hospitals to stock in formularies could work with the supplier to demand this extra level of product testing specifications. Pharmacies can institute quality agreements with vendors that would delineate their expectations for the strains present, the levels of live microbes acceptable in the final product, etc. This agreement could also mandate that any product change – as defined in the agreement – would require the vendor to notify the customer. Such an agreement might be burdensome for a hospital pharmacist, but a sophisticated dietary supplement company should be able to assure the hospital formulary of their quality.

Products made using strict specifications, geared towards infant and premature infant applications, are on the market and are safely being used in this patient population in many NICUs and as part of infant formulas. We disagree with AAP’s position that a pharmaceutical approach is needed, as long as a product of sufficient quality can be provided. To deny preterm infants probiotics, which have a significant chance of improving their clinical outcomes, is not in line with other medical recommendations. Instead, the hospital formularies should stock products that have been scrutinized for sufficient evidence of safety and efficacy. Suppliers of stocked products should provide product testing results, a description of the quality standards employed during production, and a rationale for the suitability of the standards for preterm infants. Third party verification of adherence to these quality standards would assure medical professionals regarding the safety of these products for use.

References

CAC/RCP 66-2008. Code of hygienic practice for powdered formulae for infants and young children. Codex.

Poindexter, B. 2021. Use of Probiotics in Preterm Infants. Pediatrics 147 (6): e202 1051485.

Su et al. 2020. AGA Clinical Practice Guidelines on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology 159:697-705.

Van den Akker et al.  2020. Probiotics and Preterm Infants: A Position Paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics. Journal of Pediatric Gastroenterology and Nutrition. 70(5):664-680.

 

 

Follow up from ISAPP webinar – Probiotics, prebiotics, synbiotics, postbiotics and fermented foods: how to implement ISAPP consensus definitions

By Mary Ellen Sanders PhD, Executive Science Officer, ISAPP

On the heels of the most recent ISAPP consensus paper – this one on postbiotics – ISAPP sponsored a webinar for industry members titled Probiotics, prebiotics, synbiotics, postbiotics and fermented foods: how to implement ISAPP consensus definitions. This webinar featured short presentations outlining definitions and key attributes of these five substances. Ample time remained for the 10 ISAPP board members to field questions from attendees.

When considering the definitions, it’s important to remember that the definition is a starting point – not all criteria can be included. Using the probiotic definition as an example, Prof. Colin Hill noted that the definition is only 15 words – Live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. This is a useful definition, stipulating the core characteristics of a probiotic. However, important criteria such as safety and identity are not specified in the definition yet are clearly delineated in the full paper on probiotics.

Several interesting topics emerged from this discussion, which will be explored in future blog posts. These include:

  • What is meant by host health? Microbe mediated benefits are numerous. But not all benefits are a benefit to host health. Benefits for user appearance, pets and potentially livestock may be measurable, economically important and desirable, but may not encompass ‘host health’.
  • What types of endpoints are appropriate for studies to meet the requirement of a health benefit? Endpoints that indicate improved health (such as symptom alleviation, reduced incidence of infections or quality of life measures) are targeted. Some physiological measures that may be linked to health (such as increased fecal short chain fatty acids or changes in microbiota composition) may not be sufficient.
  • What are the regulatory implications from these definitions? As suggested by the National Law Review article on the ISAPP consensus definitions, attorneys are interested in the scientific positions on how these terms are defined and characterized. Further, some regulatory actions – such as by Codex Alimentarius in defining probiotics – are underway. ISAPP is open to suggestions about the best way to communicate these definitions to regulators.
  • Is any follow-up by ISAPP to these papers anticipated in order to clarify criteria and provide simple guidance to their implementation?

Simple guidance to these substances can be found in the infographics: probiotics, probiotic criteria, prebiotics, fermented foodshow are probiotic foods and fermented foods different, synbiotics, and postbiotics. As mentioned above, watch for blog updates on implementation of the definitions for different stakeholder groups.

The recording of this webinar is available here under password protection for ISAPP industry members only.

Related information:

Consensus panel papers, all published in Nature Reviews Gastroenterology and Hepatology:

A roundup of the ISAPP consensus definitions: probiotics, prebiotics, synbiotics, postbiotics and fermented foods

 

 

 

 

Video Presentation: Behind the scenes of the consensus panel discussion on the definition of fermented foods

Numerous misunderstandings and questions exist around the concept of fermented foods. For example:

  • If a food does not contain live microorganisms, can it still be a fermented food?
  • Should the live microbes in fermented foods be called probiotics?
  • Do fermentation microbes colonize the human gut?

The first step in answering these questions is for scientists to come to agreement on what constitutes a fermented food. A new global definition of fermented foods was recently published by 13 interdisciplinary scientists from various fields—microbiology, food science and technology, immunology, and family medicine. In their paper in Nature Reviews Gastroenterology & Hepatology, fermented foods are defined as: “foods and beverages made through desired microbial growth and enzymatic conversions of food components”.

The panel discussion and the definition of fermented foods are covered in this video presentation by the paper’s first author Prof. Maria Marco, from the Department of Food Science and Technology at the University of California, Davis. This presentation was originally given at the virtual ISAPP 2020 annual meeting.

The new definition is intended to provide a clearer conceptual understanding of fermented foods for the public and industry, with the authors expecting that in the years ahead, scientists will undertake more hypothesis-driven research to determine the extent that various fermented foods improve human health and precisely how this occurs. More studies that address fermented foods in promoting health will be useful for establishing the importance of fermented foods in dietary guidelines.

The panel acknowledged that regulations on fermented foods from country to country are mainly concerned with food safety — and that, when properly made, fermented foods and their associated microorganisms have a long history of safe use.

 

60 Minutes’ 13 minutes on probiotics

By Mary Ellen Sanders, PhD, ISAPP Executive Science Officer 

On June 28, 60 Minutes aired a 13-minute segment about probiotics titled, “Do Probiotics Actually Do Anything?” Unfortunately the media segment did not provide listeners with a nuanced perspective.

‘Probiotics’ were treated as if they were one entity, ignoring the best approach to addressing the topic of what probiotics do: evaluate the evidence for specific strains, doses and endpoints, and then make a conclusion based on the totality of the evidence. They would have found that many experts agree that actionable evidence exists for certain probiotics to prevent antibiotic associated diarrhea (here, here), prevent upper respiratory tract infections (here), prevent morbidity and mortality associated with necrotizing enterocolitis (here,), treat colic (here), and treat acute pediatric gastroenteritis (here). (For an overall view of evidence, see here.)

Importantly, not all retail probiotics have evidence (at least evidence that is readily retrievable, see here and here). But that does not mean that none do.

The 60 Minutes segment also highlighted questions about probiotic safety. No intervention is without risk, and no one claims as much for probiotics. Prof. Dan Merenstein, MD, just one clinical investigator of probiotics, has collected over 20,000 pediatric clinical patient days’ worth of safety data over the past eight years of clinical investigation, with no indication of safety concerns. In fact, participants in the placebo group generally have more adverse events than in the probiotic groups. But importantly, the safety standard for probiotics was mischaracterized by 60 Minutes. According to Dr. James Heimbach, a food safety expert (not interviewed in the segment) who has conducted 41 GRAS determinations on probiotics, over 25 of them notified to the FDA, he objects to the statement that GRAS is a lower safety bar than a drug. He clarifies:

“The safety standard that applies to food additives and GRAS substances, “reasonable certainty of no harm,” is a far higher standard than that applying to drugs. Drugs are judged against a risk/benefit standard, which can potentially allow quite dangerous drugs on the market provided they offer a significant benefit. The safety standard for drugs also applies only to prescribed doses for specific individuals over prescribed durations. The food-additive/GRAS substance standard, on the other hand, requires safety at any biologically plausible level of intake, for any person (child, adult, elderly; pregnant; etc.), over a lifetime. And it is a risk-only standard—no potential benefit is allowed to override the “reasonable certainty of no harm” standard. Additionally, in the case of GRAS substances (which includes most probiotics), the evidence of safety must be published in the peer-reviewed scientific literature and be widely accepted by the scientific community as well as by government regulators.”

Finally, the story implied that benefits people claim for themselves when using probiotics are due to a placebo effect. This ignores the many properly controlled studies directly comparing the effects of specific probiotics to placebos. A positive trial on probiotics, such as observed in this recent trial on irritable bowel syndrome symptoms (here) and in most trials included in Cochrane meta-analyses on prevention of C. difficile-associated diarrhea (here), means that positive effects were observed beyond any placebo effect. The placebo effect is real, equally applicable to probiotics and drugs, but as with all clinically evaluated substances, properly controlled trials control for this effect.

The probiotic field has come a long way over the past 20 years with regard to number and quality of clinical trials. In that time, well-done systematic reviews of the evidence have found benefits for specific probiotics for specific conditions, while also finding a lack of evidence for beneficial effects in other contexts. There are of course well-conducted clinical trials that have failed to demonstrate benefit (here, here, here). This should not be equated to mean that probiotics do not do anything.

Many challenges remain for improving the quality of the evidence across the wide range of different strains, doses, endpoints and populations. More clinical research needs to be conducted in a manner that minimizes bias and is reported according to established standards. Confidence in the quality of commercial products could be improved by industry adopting third party verification (here), and the quality of products targeting compromised populations need to be fit for purpose (here). Companies should stop using the term ‘probiotic’ on products that have no evidence warranting that description. We need to understand much better how a person’s individual situation, such as diet, microbiome, use of medications and fitness, impact the ability of a probiotic to promote health. Much remains to be learned in this evolving and exciting field. As Dr. Merenstein says, “The key question is not, ‘Do probiotics actually do anything?’, as that is easily answered ‘yes’ when you look at robust placebo-controlled trials of specific probiotics. Better questions are ‘Which probiotics do anything, and for what?’”

Further reading:

Misleading press about probiotics: ISAPP responses

ISAPP take-home points from American Gastroenterological Association guidelines on probiotic use for gastrointestinal disorders

New publication gives a rundown on probiotics for primary care physicians

Safety and efficacy of probiotics: Perspectives on JAMA viewpoint

New publication gives a rundown on probiotics for primary care physicians

With an increasing number of patients becoming aware of the human microbiome and its role in health, primary care physicians are faced with questions about probiotics as a possible strategy for maintaining health. Patients may see conflicting messages in the news and on product labels – so how can they know which probiotic benefits are scientifically proven?

A new publication in the Journal of Family Practice provides a quick update on evidence for the use of probiotics in different indications, so primary care physicians can equip themselves to provide evidence-based recommendations and to answer patients’ most commonly asked questions about probiotics.

Written by ISAPP board members Daniel J. Merenstein, MD and Mary Ellen Sanders, PhD, along with Daniel J. Tancredi, PhD, the article provides practical advice in the form of practice recommendations, along with comments about safety data from numerous clinical trials.

As Dr. Merenstein stated, “We wrote this article for working clinicians. They are interested in the science but are busy and want a straightforward evidence-based resource. We are hopeful this will be a go-to resource during the busy clinic day.”

Verbatim from the article are the following practice recommendations:

  • Consider specific probiotics to prevent antibiotic-associated diarrhea, reduce crying time in colicky infants, and improve therapeutic effectiveness of antibiotics for bacterial vaginosis.
  • Consider specific probiotics to reduce the risk for Clostridioides (formerly Clostridium) difficile  infections, to treat acute  pediatric diarrhea, and to manage symptoms of constipation.
  • Check a product’s label to ensure that it includes the probiotic’s genus, species, and strains; the dose delivered in colony-forming units through the end of shelf life; and expected benefits.

The full text can be accessed by logging into Medscape.

ISAPP provides guidance on use of probiotics and prebiotics in time of COVID-19

By ISAPP board of directors

Summary: No probiotics or prebiotics have been shown to prevent or treat COVID-19 or inhibit the growth of SARSCoV-2. We recommend placebo-controlled trials be conducted, which have been undertaken by some research groups. If being used in clinical practice in advance of such evidence, we recommend a registry be organized to collect data on interventions and outcomes.  

Many people active in the probiotic and prebiotic fields have been approached regarding their recommendations for using these interventions in an attempt to prevent or treat COVID-19. Here, the ISAPP board of directors provides some basic facts on this topic.

What is known. Some human trials have shown that specific probiotics can reduce the incidence and duration of common upper respiratory tract infections, especially in children (Hao et al. 2015; Luoto et al. 2014), but also with some evidence for adults (King et al. 2014) and nursing home residents (Van Puyenbroeck et al. 2012; Wang et al. 2018). However, not all evidence is of high quality and more trials are needed to confirm these findings, as well as determine the optimal strain(s), dosing regimens, time and duration of intervention. Further, we do not know how relevant these studies are for COVID-19, as the outcomes are for probiotic impact on upper respiratory tract infections, whereas COVID-19 is also a lower respiratory tract infection and inflammatory disease.

There is less information on the use of prebiotics for addressing respiratory issues than there is for probiotics, as they are used mainly to improve gut health. However, there is evidence supporting the use of galactans and fructans in infant formulae to reduce upper respiratory infections (Shahramian et al. 2018; Arslanoglu et al. 2008). A meta-analysis of synbiotics also showed promise in repressing respiratory infections (Chan et al. 2020).

Mechanistic underpinnings. Is there scientific evidence to suggest that probiotics or prebiotics could impact SARS-CoV-2? Data are very limited. Some laboratory studies have suggested that certain probiotics have anti-viral effects including against other forms of coronavirus (Chai et al. 2013). Other studies indicate the potential to interfere with the main host receptor of the SARS-CoV-2 virus, the angiotensin converting enzyme 2 (ACE2). For example, during milk fermentation, some lactobacilli have been shown to release peptides with high affinity for ACE (Li et al. 2019). Recently, Paenibacillus bacteria were shown to naturally produce carboxypeptidases homologous to ACE2 in structure and function (Minato et al. 2020). In mice, intranasal inoculation of Limosilactobacillus reuteri (formerly Lactobacillus reuteri) F275 (ATCC 23272) has been shown to have protective effects against lethal infection from a pneumonia virus of mice (PVM) (Garcia-Crespo et al. 2013). These data point towards immunomodulatory effects involving rapid, transient neutrophil recruitment in association with proinflammatory mediators but not Th1 cytokines. A recent study demonstrated that TLR4 signaling was crucial for the effects of preventive intranasal treatment with probiotic Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus) GG in a neonatal mouse model of influenza infection (Kumova et al., 2019). Whether these or other immunomodulatory effects, following local or oral administration, could be relevant to SARS-CoV-2 infections in humans is at present not known.

Our immune systems have evolved to respond to continual exposure to live microbes. Belkaid and Hand (2016) state: “The microbiota plays a fundamental role on the induction, training, and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes.” This suggests a mechanism whereby exposure to dietary microbes, including probiotics, could positively impact immune function (Sugimura et al. 2015; Jespersen et al. 2015).

The role of the gut in COVID-19. Many COVID-19 patients present with gastrointestinal symptoms and also suffer from sepsis that may originate in the gut. This could be an important element in the development and outcome of the disease. Though results from studies vary, it is evident that gastrointestinal symptoms, loss of taste, and diarrhea, in particular, can be features of the infection and may occur in the absence of overt respiratory symptoms. There is a suggestion that gastrointestinal symptoms are associated with a more severe disease course. Angiotensin converting enzyme 2 and virus nucleocapsid protein have been detected in gastrointestinal epithelial cells, and infectious virus particles have been isolated from feces. In some patients, viral RNA may be detectable in feces when nasopharyngeal samples are negative. The significance of these findings in terms of disease transmission is unknown but, in theory, do provide an opportunity for microbiome-modulating interventions that may have anti-viral effects (Cheung et al. 2020; Tian et al. 2020; Han et al. 2020).

A preprint (not peer reviewed) has recently been released, titled ‘Gut microbiota may underlie the predisposition of healthy individuals to COVID-19’ (Gao et al. 2020) suggesting that this could be an interesting research direction and worthy of further discussion. A review of China National Health Commission and National Administration of Traditional Chinese Medicine guidelines also suggested probiotic use, although more work on specific strains is needed (Mak et al. 2020).

Are probiotics or prebiotics safe? Currently marketed probiotics and prebiotics are available primarily as foods and food/dietary supplements, not as drugs to treat or prevent disease. Assuming they are manufactured in a manner consistent with applicable regulations, they should be safe for the generally healthy population and can be consumed during this time.

Baud et al. (in press) presented a case for probiotics and prebiotics to be part of the management of COVID-19. Although not fully aligned with ISAPP’s official position, readers may find the points made and references cited of interest.

Conclusion. We reiterate, currently no probiotics or prebiotics have been shown to prevent or treat COVID-19 or inhibit the growth of SARSCoV-2.

 

Safety and efficacy of probiotics: Perspectives on JAMA viewpoint

By Mary Ellen Sanders PhD, executive science officer, ISAPP,  and Daniel Merenstein MD, Department of Family Medicine, Georgetown University School of Medicine

The Journal of the American Medical Association (JAMA) recently published a short viewpoint that called into question the safety and efficacy of probiotics. After careful review, we concluded that some opinions expressed were not consistent with available data. We share our perspectives here.

Claim 1: The paucity of high-quality data supporting the value of probiotics.

The authors speak to the “paucity” and “lack” of data supporting probiotic use. They criticize probiotic meta-analyses in general, even though there are many well-done ones, which describe clear PICOS, assess the quality of studies included, and assess publication bias. Many conclude that there is evidence that certain probiotics may be beneficial for several clinical endpoints. In the case of treatment of colic, an individual participant data meta-analysis was conducted on a single strain, and concluded “L reuteri DSM17938 is effective and can be recommended for breastfed infants with colic” (Sung et al. 2018). For necrotizing enterocolitis (NEC), a change in practice is recommended by a Cochrane meta-analysis (AlFaleh et al. 2018), which is consistent with draft American Gastroenterological Association (AGA) recommendations posted last month. In some cases, conclusions are qualified as being based on low quality data, which is also the case with many standard-of-care medical interventions. Other benefits supported for certain probiotics by evidence are shown in Table 1 of Sanders et al. 2018. But an evidence-based review of available data would not support a general statement that “data are lacking.”

Instead, we think a discussion of what evidence is actionable is reasonable to have. For this discussion, different people or groups can reasonably set the bar at different levels for what constitutes actionable evidence. But several medical organizations, including the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, World Gastroenterology Organisation, American College of Gastroenterology, AGA (proposed, for antibiotic-associated diarrhea, NEC and pouchitis), European Crohn’s and Colitis Organization, and European Society for Primary Care Gastroenterology have actionable recommendations for probiotic use for one or more indications. For those indications, any individual physician may judge that the available evidence as not convincing to him or her, but many qualified healthcare experts did find the evidence convincing and have made recommendations accordingly. We recognize that the JAMA viewpoint was limited in the number of words and references allowed, but to impugn an entire field, the authors are obliged to explain why their views differ so much from established organizations.

The authors also criticize the inclusion of small, single-center trials in probiotic meta-analyses. They state such studies have less oversight, are more susceptible to misconduct and are at greater risk of bias than larger, multicenter trials, and thereby skew conclusions of meta-analyses in favor of probiotics. They state, without evidence, that small trials are more likely to show large effects and are more likely to be published. They advocate for meta-analyses that only include multi-center trials, thereby ignoring much available evidence on the basis of unsubstantiated preferences. There are a number of reasons why some trials are multi-center, but improved quality or closer monitoring are not among them (see here, here and here). Multicenter trials may be necessary to study a rare medical endpoint, a condition with an expected small effect size but significant health implications, or to accelerate the time course for a study. In fact, an analysis of 81 meta-analyses of RCTs in 2012 concluded:

“Our results do not support prior findings of larger effects in SC (single-center) than MC (multi-center) trials addressing binary outcomes but show a very similar small increase in effect in SC than MC trials addressing continuous outcomes. Authors of systematic reviews would be wise to include all trials irrespective of SC vs. MC design and address SC vs. MC status as a possible explanation of heterogeneity (and consider sensitivity analyses).” [Emphasis ours]

 

In our experience, the size of a study does not inevitably minimize risk of bias. We have directly witnessed private physicians enroll for large multi-site trials without such oversight or professionalism. As the great David Sackett said in his paper from 20 years ago, “The more detailed the entry form and eligibility criteria for ‘somebody else’s’ RCT, the greater the risk the criteria will be ignored, misunderstood or misapplied by distracted clinicians who regard them as further intrusions into an overfull call schedule.” Further, due to often being underpowered, taken alone smaller studies are less, not more, likely to generate positive findings than larger trials. But when they are included in a meta-analysis, these studies contribute to the total body of evidence. We have personally worked on many single-center randomized controlled trials on probiotics. These often have monitors from the U.S. Food and Drug Administration and/or the National Institutes of Health, they are all registered with both primary and secondary outcomes listed, they utilize a data safety monitoring board, they undergo true allocation concealment, and otherwise are conducted to minimize risk of bias. To criticize probiotic studies for being single-center vs multicenter seems unjustified and baseless.

It is quite true that many of the studies conducted on probiotics were done 15 or more years ago, and the quality standards do not meet what we expect today. We wholeheartedly agree but would ask the authors to review studies conducted on drugs 15 years ago, and they will see the same issues. So we agree that more trials using modern quality standards are needed in the field of probiotics, as is the case for any interventions with a long history of being studied.

Claim 2: Potentially biased reviews of probiotic efficacy

In trying to explain why physicians might recommend probiotics, the authors speculate that some professional societies and some journals may be insufficiently critical in reviewing probiotic studies due to financial conflicts of interest. We have no doubt that there is bias in the scientific realm, which is not just limited to financial conflicts of interest, but question if there is any evidence that this occurs any more or less frequently with probiotics compared to any other realm of science. To leverage this accusation at the probiotic field specifically implies it is especially egregious, but no data supporting this accusation were provided. Also there is no face validity for this accusation. There is much more money to be made by pharmaceuticals and medical interventions than probiotic supplements and yogurts.

Claim 3: Complex framework in which probiotics are regulated and sold

The regulatory framework for probiotics can be difficult to navigate and is not always in the best interest of stakeholders, but we don’t think it’s reasonable to criticize the probiotic field for this situation. In the USA, probiotic products are bound by law that was enacted by Congress and the rules/guidance developed by the FDA for allowable product claims, levels of required regulatory oversight, and lack of requirements for premarket approval. It is fair to criticize Congress and the FDA for these circumstances surrounding the category of dietary supplements, but doing this in the context of an article on probiotics unfairly maligns probiotics.

Drugs vs dietary supplements. Most probiotics are sold as foods or dietary supplements. Since probiotics were first described as fermenting microbes in soured milk, this makes historical sense. Companies and consumers do not view these products as drugs, and in most cases they are not used as drugs. Outside a regulatory mindset, it makes perfect sense for foods to be useful for promoting health and managing symptoms, and this is what has driven 30 years of research and marketing of probiotics. Forcing all probiotics into a drug rubric would deprive consumers of access, would greatly increase their cost, and would preclude responsible food/supplement manufacturers from producing them. Drugs are drugs primarily to protect the safety of the patient. All drugs are assessed with a risk/benefit balance, and in some cases, the risk is significant. In the case of probiotics, we agree with the authors that most probiotics are likely safe for the general population. We see no reasonable justification to advocate that these products must all be researched and sold as drugs.

Probiotic product quality.The authors seem to prefer the drug model for probiotics based on a perceived need for improved product quality and oversight. Yet all foods and dietary supplements in the USA are required by law to be manufactured under good manufacturing practices. This includes most every product bought at the grocery store and served for dinner as well as probiotic foods and supplements. Further, companies are required to label their products in a truthful and not misleading fashion, including representations of contents and claims. Companies that fail to meet these standards are in violation of the law. Yes, there are products – of all types – that fall short of these requirements. The many responsible probiotic manufacturers and probiotic scientists decry such occurrences. However, these cases do not define the probiotic field any more than medical errors define physicians. It is not fair to impugn the entire probiotic industry based on the ‘bad apples’ that participate in it. A 2017 ESPGHAN review cites surveys of probiotic products from different regions globally, most of which report examples of probiotic products falling short in some quality attribute. Such surveys highlight quality problems, but due to sampling and methodological approaches, their results do not provide a reliable estimate of the extent of problem among commercial probiotic products. Many probiotic products are produced responsibly and are subjected to third party quality audits. The absence of such third party documentation is not evidence of poor quality, but we agree that it serves to improve consumer and healthcare provider confidence (see Jackson et al. 2019), and if more fully adopted, would weed out irresponsible probiotic manufacturers.

Oversight of probiotic research. The authors state, “If a manufacturer claims that any product, including a probiotic, cures, mitigates, treats, or prevents disease, the product is classified as a drug, thereby triggering a costly Investigational New Drug (IND) application process.” However, they seem to conflate the regulatory approach to product claims and the regulatory oversight of biologic drug research. In the case of product claims, if a product claims to cure, treat, prevent or mitigate disease, it is by definition a drug. If it has not undergone appropriate drug approval process, it is an illegally marketed drug and is subject to FDA action, including recall. Probiotics not destined for sale as drugs should not have to be researched under a drug rubric. This does NOT mean that such studies will de facto be substandard studies. We all understand the importance of conducting and reporting trials according to well-established guidelines. Studies on foods and supplements can and should follow those same principles.

Claim 4: Possible concerns about probiotic safety

Medical professionals balance potential harm with potential benefit for any intervention they recommend. Regarding safety of probiotics, the authors acknowledge that most probiotics are likely safe, but we would qualify that statement with “for their intended uses.” The use of probiotics in critically ill patient populations needs to be done with caution, proper oversight and a justification that the potential benefit will outweigh risk. The authors cite two examples to support their concern about probiotic safety, both in critically ill patient populations. One was a retrospective study looking at bacteremia in critically ill children (see the report here and responses to the report here and here). The second was a RCT that reported higher mortality in patients with pancreatitis (see the report here, with additional perspectives on interpreting safety outcomes here and here). We are not aware of any probiotics that are marketed for such uses, and if they were, they would be marketed as drugs, requiring drug-level safety and efficacy evidence. These studies are not an indictment of safety of probiotic foods and supplements, which in most cases are intended for the generally healthy population.

The authors further state that studies identifying adverse events from probiotics are the “tip of the iceberg” – creating an image of a huge number of unreported adverse incidents poised to be revealed. We have personally studied the most widely used Bifidobacterium strain, and in well over 30,000 pediatric patient days have not seen any serious adverse events and no more adverse events than placebo. The article cited by the authors states that our trials adequately reported harm. Obviously, no intervention is harmless, and no one claims as much for probiotics. It is true that older probiotic studies can rightly be criticized for not rigorously collecting and reporting data on adverse events (Hempel et al. 2011). However, a reasonable assessment of all available data, including data from well-conducted clinical trials, including trials in vulnerable populations, history of safe use, FDA notified assessments for GRAS use of certain probiotic strains, European Food Safety Authority QPS list, and others support that commonly used probiotics have a strong safety record for use in the general public.

Transferable antibiotic resistance. Regarding the risk that probiotics may transfer antibiotic resistance genes, this is a hypothetical concern – there is no documented case of this. Further, one pillar of probiotic safety assessments is that strains with antibiotic resistance genes flanked by mobile genetic elements are excluded from commercialization. As stated by Ouwehand et al. 2016, “Probiotics are specifically selected to not contribute to the spread of antibiotic resistance and not carry transferable antibiotic resistance.” The current approach to probiotic safety is that complete, well annotated genome sequences are available for commercial strains. This information is typically included in GRAS notices submitted to the FDA, and all the major probiotic suppliers require this level of safety assessment. This is the expected standard by the European Food Safety Authority as well, a standard that we enthusiastically and unreservedly endorse. Transferable antibiotic resistance is not a lurking threat of probiotics use, but is a well-considered issue adequately addressed by responsible probiotic manufacturers.

Conclusion

We believe that this JAMA viewpoint misrepresents the totality of data on probiotics and can potentially do harm by dissuading use of probiotics in an evidence-based manner. Important points have been raised by the authors, especially with regard to the use of probiotics in vulnerable populations, but this does not characterize most of probiotic use. We agree, as we expect the majority of scientists working on probiotics would, that additional, well controlled human studies are needed. That was why we were pleased to see the authors’ studies assessing the impact of L. rhamnosus R0011 and L. helveticus R0052 or L. rhamnosus GG on acute pediatric gastroenteritis, even though the results of both studies were null (see blog post regarding these studies here and here). But as we await additional trials, we have a responsibility to consider available evidence. The authors raise many good points that the entire medical field could learn from, but there are clear indications for probiotics and they should continue to be used for these indications, likely benefitting many while harming few.

Acknowledgements

MES and DM are grateful for the critical review of this perspective by probiotic safety expert Dr. James Heimbach, biostatistician Dr. Daniel Tancredi, and gastroenterologist and probiotic expert Dr. Eamonn Quigley.

 

 

 

Probiotics in fridge

The FDA’s view on the term probiotics, part 2: Further down the rabbit hole

By James Heimbach, Ph.D., F.A.C.N., JHEIMBACH LLC, Port Royal, VA

A number of weeks ago I wrote on the ISAPP blog about US Food and Drug Administration (FDA) declining to file Generally Regarded As Safe (GRAS) notices that described the subject microorganism as a “probiotic” or “probiotic bacterium” (see The FDA’s view on the term “probiotics”). Now the FDA’s response to such GRAS notices has developed additional ramifications. Let me put them into two categories: Class 1 misdemeanors that will cause FDA to reject the notice, and Class 2 misdemeanors that will probably not prevent filing, but will cause FDA to raise questions. I should note that these thoughts are based on both my own direct experiences and my repeated telephone conference calls with FDA.

Class 1 Misdemeanors

  1. Using the term probiotic in any way in describing or characterizing the subject microorganism or its past, present, or intended use.
  2. Extended discussion of benefits derived from ingestion of the microorganism in animal or human research.
  3. Any mention, however brief, of the potential for the microorganism to be used in dietary supplements.

Class 2 Misdemeanors

  1. Including brief mentions of the microorganism serving as a probiotic. E.g., if you cite a study of the microorganism that you might previously have reported as “a study of the probiotic benefits” of the microorganism, change it to simply “a study of the benefits” of the microorganism. This same caution is advised when reporting opinions from the European Food Safety Authority (EFSA) or other authoritative bodies.
  2. Using the word “dose” in describing intended use. Also see #4 below.
  3. Virtually any use of the term “dietary supplement,” including in reporting past, current, or intended uses of the strain or the species in Europe or elsewhere, by anyone.
  4. Even relatively brief mentions of benefits. The recommended way of handling reporting of human studies of the species or strain is to avoid any narrative at all. Simply summarize the studies in tabular form, listing the citation, study design (RCT, open-label, etc.) and objective, study population (number, sex, age, characterization such as IBS patients, malnourished children, preterm infants), test article (microorganism binomial and strain), dose (but call it “administration level”—“dose” can be seen as indicating a drug or dietary supplement), duration, and safety-related results. Include methods used to ensure that any adverse events or severe adverse events would have been reported—medical examinations, self-report questionnaires, parental questionnaires, biochemical measures, etc.—and at what time points during or after the in-life portion of the research. Avoid ANY discussion of improvements seen in the test group.

Good luck!

A Miracle Treatment! Or Not?

By Daniel J. Merenstein, MD, Professor, Department of Family Medicine and Director of Research Programs, Georgetown University Medical Center, Washington DC

Here’s a scenario for a physician: A drug rep walks into your office. She has a new product she wants to talk to you about. You are super excited to talk to her as you have heard all about this product from many other sources. The data that are being reported are amazing. There are hundreds if not many more case reports of it working. People were dying and then totally recovered after being given this product. It has been witnessed and published! The efficacy is well over 90%. You are not sure there is any intervention you have ever heard of that has such amazing efficacy.  She tells you that in some of the cases, the patients were very sick and despite numerous courses of antibiotics they did not improve until this new product was given. You ask for more information as you are starting to think this must be like when doctors first heard of penicillin.

The product can be taken orally but that is not the way it is generally given. She tells you that although there are 2-3 ways to administer, most hospitals are doing it the most expensive way now. (You later learn that the typical– and most expensive – approach to administering the product may not even be the best approach.) But you withhold judgement as this sounds exciting. And remember, you have been hearing all about this from so many different sources.

But as you listen, it gets a little confusing. She tells you that the makeup of the product is different in nearly every application. This makes it exciting to use, as one really never knows what is in it. It is also relatively cheap to obtain, as the patient can have a friend just bring it in for them.

Since you are trained in evidence-based medicine, you ask a few questions. It is exciting there are all sorts of case reports but what about the randomized controlled trials, and what does the FDA say about it? You ask if you can look at the trials—there is no way you can review hundreds of studies now but if she leaves them for you, you will look at them this weekend. But before she leaves you ask a few quick questions. How many of these studies are randomized? She says 10. How many use a placebo? She says 6. You tell her what you really want to do is review all the randomized placebo-controlled blinded studies, if she can just leave those.

Later in the week you go pick up the folder she left and right away are a little surprised at how light it is. It looks like there are only 3 randomized placebo-controlled blinded studies, only two of which are peer-reviewed and published. One was a positive study; overall, 91% of patients in the new drug group achieved clinical cure compared with 63% in the control group. But you realize this is not exactly a placebo-controlled trial. What they did is compare two types of the new application. Furthermore, this study was conducted at two sites and at one of the sites both the new application and the control had nearly identical rates of improvement, both over 90%. Okay so this was not a perfect study, only 46 total participants, but still pretty exciting with over 90% improvement.

The second study had three groups of 83 people. Group A (2 doses of new drug), B (2 doses of placebo) and C (1 dose of new drug and 1 placebo dose). The efficacy for these three groups was 61%, 45%, and 67%, respectively. The primary endpoint was not met (P = .152). Interestingly, Group C, which included one dose of placebo, was superior to all placebo (group B) but Group A, in which the drug was given two times, was not superior to placebo.

The third study, a Phase II trial, appears to not be peer-reviewed or published, but just reported online. However, it does appear this was far from a positive study, with 44% of subjects (26 of 59) who received the new application improving versus 53% of subjects (16 of 30) who received placebo. I have been told that this study will be published soon and that a Phase III study of this intervention was also undertaken.

Well now you are getting a little more confused. You have heard from fellow docs, the lay press, medical literature and the drug rep that this new application was over 90% effective. But it appears in the three reasonably well controlled studies, the ones from which we can really draw conclusions, only one was positive and in that study the control was not a real placebo.

Besides efficacy, you remember that one has to always consider the cost and adverse events. Maybe this new application is like recommending the Mediterranean Diet, where the efficacy from studies is limited but the adverse events are nearly non-existent. But when you do a quick PubMed search you learn that this is far from the case with this product. This application has been reported to cause very serious adverse events, including extended-spectrum beta-lactamase (ESBL)–producing Escherichia coli bacteremia resulting in one death. You look online expecting that the FDA must have some serious warnings about this new drug. You don’t find any such warnings.

You may have guessed that the product is in fact a Fecal Microbiota Transplant (FMT). Besides having a professional interest in this much-discussed treatment, I have a personal interest. Last year my son was in a Johns Hopkins Hospital with a central line and two broad-spectrum antibiotics for a bone infection. I asked them to provide him with probiotics since the number needed to treat to prevent pediatric antibiotic associated diarrhea is 9, per a 2019 Cochrane review. This review included 20 randomized, placebo-controlled studies of a single strain. However, I was told no Hopkins hospital will administer probiotics, and further, that we could not even bring in our own because of concerns for the safety of others. But no worries – if my son got recurrent C. diff infection, Hopkins would allow this great new procedure, FMT.

In medicine I cannot truly imagine a probiotic with the same evidence base as FMT receiving such widespread acceptance and escaping regulatory scrutiny. And currently used probiotics have an excellent safety record. Just imagine, if this were a new drug being sold there would be widespread condemnation of the attempt to get approval mainly based on anecdotal case reports.  Shockingly, based on the level of evidence I have described many experts now think a randomized placebo-controlled trial is not even ethical for the placebo group, as of course they know FMT works.

It is a quandary. I am not opposed to FMT; I find it fascinating. But why has it been so widely accepted and why has the FDA, which in general has been very careful with probiotic applications in medicine, allowed this to proceed for recurrent C diff infection with only enforcement discretion? Both treatments administer live microorganisms, one with 31 placebo controlled randomized trials, including 8672 subjects [of C. diff prevention (number needed to prevent=42), not treatment like FMT], the other with pretty limited data.  I have my thoughts, but better for you to ponder it.

Additional related content:

Webinar presenting current level of evidence for FMT: FECAL MICROBIOTA TRANSPLANTATION, AM I SURE IT WORKS? Oct 29, 2020. Presented by Prof. Daniel Merenstein, introduced by Prof. Hania Szajewska, sponsored by Centro Studi Scientifici, La Marcigliana.

 

 

 

Misleading press about probiotics: ISAPP responses

By Mary Ellen Sanders, PhD, Executive Science Officer, ISAPP

It seems over the last couple of years, open season on “probiotics” has been declared. Responding in a scientifically accurate fashion to misleading coverage, whether it is in reputable scientific journals or in the lay media, takes time and care.

I want to be clear: well-conducted clinical trials, regardless of the outcomes, are welcome contributions to the body of evidence. No one expects that every probiotic will work for every indication. Null trials document this – they tell researchers to look elsewhere for solutions. Further, we must acknowledge the limitations and weaknesses of available evidence; unfortunately, not all trials are well-conducted. We also need to be just as diligent in criticizing press that is overly positive about probiotic benefits, which are not backed by evidence.

However, articles with misleading information are all-too-frequently published. Below are ISAPP responses to some of these stories.

  1. A paper on rhamnosus GG bacteremia in ICU patients led to headlines about ‘deadly infections’ and probiotic administration ‘backfiring’, even though no patients died and clinical outcomes were not collected. ISAPP responded to clarify appropriate context for understanding the safety issues raised from this paper. See Lactobacillus bacteremia in critically ill patients does not raise questions about safety for general consumers.
  2. The Wall Street Journal published an article condemning probiotics for reducing fecal microbial diversity. ISAPP responded with a blog Those probiotics may actually be helping, not hurting, pointing out the errors in the author’s thinking (equating diversity with gut health).
  3. A pair of well-conducted clinical trials that did not show impact of probiotics on pediatric acute diarrhea led to some ignoring all previous evidence and concluding that no probiotics were useful for acute pediatric diarrhea. ISAPP responded about the importance of putting new evidence in the context of the totality of evidence: L. rhamnosus GG for treatment of acute pediatric diarrhea: the totality of current evidence. Also, Dr. Eamonn Quigley, an ISAPP board member, published an independent response.
  4. Pieter Cohen concluded that evidence for probiotic safety is insufficient in an article in JAMA Internal Medicine. ISAPP’s response was published in a letter to the editor, along with Cohen’s response to our letter.
  5. Responding to two papers in Cell (here and here), and accompanying media coverage that called into question probiotic safety and efficacy, ISAPP published a detailed post Clinical evidence and not microbiota outcomes drive value of probiotics objecting to conclusions, and released a public statement.
  6. Jennifer Abbasi wrote a critical article about probiotics with the inflammatory title “Are Probiotics Money Down the Toilet? Or Worse?” ISAPP responded with the following blog post: Probiotics: Money Well-Spent For Some Indications.
  7. When Rao, et al incriminated probiotics as a cause of D-lactic acidosis, ISAPP posted a blog and published a letter to the editor of Clin Transl Gastroenterol objecting to this conclusion.
  8. ISAPP responded to a paper claiming that probiotics were unsafe in children: Probiotics and D-lactic acid acidosis in children and Brain Fogginess and D-Lactic Acidosis: Probiotics Are Not the Cause.

Board member and Professor Colin Hill wrote a blog post called Another day, another negative headline about probiotics? His post provides some useful questions to consider when reacting to a publication:

  • Is the article describing an original piece of research and was it published in a reputable, peer-reviewed journal?
  • What evidence is there that the strain or strain mix in question is actually a probiotic? Does it fit the very clear probiotic definition?
  • Was the study a registered human trial? How many subjects were involved? Was it blinded and conducted to a high standard?
  • What evidence was presented of the dose administered and was the strain still viable at the time of administration?
  • Were the end points of the study clear and measurable? Are they biologically or clinically significant to the subjects?
  • Did the authors actually use the words contained in the headline? “Useless”, or “waste of money”, etc?

 

Lactobacillus bacteremia in critically ill patients does not raise questions about safety for general consumers

By Dan Merenstein MD, Professor of Family Medicine, Georgetown University Medical Center, Washington DC, USA; Eamonn Quigley MD, Professor of Medicine, Houston Methodist Hospital and Weill Cornell Medical College, Texas USA; Gregory Gloor PhD, Professor of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Hania Szajewska MD, Professor of Paediatrics, The Medical University of Warsaw, Poland;  and Mary Ellen Sanders PhD, Executive Science Officer, ISAPP, Colorado, USA.

A recent Nature Medicine paper reported blood cultures positive for L. rhamnosus GG in six critically ill patients at Children’s Hospital in Boston.

About this study

Patients (aged 1, 2, 4, 12, 19 and 19 years) with L. rhamnosus-associated bacteremia suffered from different chronic conditions (mitochondrial disorder, cerebral palsy, congenital heart disease, cystic fibrosis) and were located either in the ICU (cardiac or medical/surgical ICU) or ICP (intermediate care program) at the hospital at the time of bacteremia. The bacteremia was discovered during routine blood culture screens. Clinical presentations were not described in detail; however, none had endocarditis or died from the bacteremia, although one did get a central line infection. Two of the six cases of bacteremia in probiotic-consuming patients were determined by attending physicians to be transient or due to contaminants, and were not treated. The other four cases were treated with antibiotics. A further 516 patients dosed with the same probiotic did not develop bacteremia.

The researchers examined the blood isolates and using whole genome sequencing were able to confirm that the Lactobacillus isolated from the blood of these patients was genetically identical – with the exception of a few SNPs – to L. rhamnosus GG present in the probiotic product. This is the preferred approach to confirming the source of blood culture isolates.

Important questions arising from critical review of this paper

  1. Was the study appropriately controlled?

The authors report a seemingly high rate (1.1%) of Lactobacillus bacteremia among the 522 L. rhamnosus-consuming patients compared with 0.009%, the rate of Lactobacillus bacteremia among 21,652 patients who did not receive probiotics.  However, the paper does not justify the legitimacy of comparing these two groups to each other. Indeed, other underlying factors could contribute to the different rates of bacteremia, as these were not matched cohorts. It is important to recognize the limitations of the retrospective design used here, which limits the ability to match controls, and to control for cofounders such as underlying illness, severity of clinical illness and co-therapies (including antibiotics).

  1. What is the mechanism of transmission of the probiotic to the patients’ blood?

Most of the patients had a central line venous catheter. The paper reported that probiotics were mostly administered via tube feeding. If a probiotic is able to readily translocate the gut barrier in such patients, this would be a safety concern. But if the observed bacteremia was due to contamination of a central line, this may say more about hospital procedures than safety of the probiotic. Indeed, 16 years ago, central line contamination leading to fungemia was reported. In a 2005 paper, 92% of cases of fungemia associated with Saccharomyces cerevisiae var boulardii administration had an IV catheter. Based on such reports, handling dried probiotics in a hospital environment with critically ill patients should be done with caution. However, with proper administration procedures, certain probiotics are medically recommended in this setting.

  1. What was the clinical impact of administration of L. rhamnosus GG?

Important clinical parameters such as all-cause mortality (the outcome of greatest importance), length of hospital stay, abscesses, required medications, and others were not reported (although central line infection was reported) for the patients studied. The clinical context of this study would be more easily understood if information on the indications driving probiotic administration was provided. The authors question the risk/benefit of probiotic administration to ICU patients in a children’s hospital yet focus solely on risk and do not measure benefit. This suggests an underlying assumption by the authors that when it comes to probiotics, any risk is too much. Did the patients given L. rhamnosus GG suffer negative clinical outcomes more often than age and condition-matched controls? If so, then giving this probiotic to these patients cannot be recommended. But if not, then even though risk of bacteremia may be higher, if the patients given the probiotic fared better than matched patients, then the probiotic should be considered a reasonable option.

Lastly, the finding of a rate of Lactobacillus bacteremia of 1.1% needs to be viewed in the context of a 20% rate of nosocomial infections in the ICU (here and here).

Lessons regarding probiotic safety

Two main issues are raised by this study. The first is whether the evidence suggests opportunistic pathogenic properties of L. rhamnosus GG or rather that procedures used to administer probiotics in the ICU environment resulted in contamination, which caused bacteremia. No conclusions can be made from this study regarding this. The second is the importance of placing the results of this study into a clinical framework. The study implies risk from probiotic administration, even though the study was not powered for clinical outcomes and could not place any perceived increased risk into the context of any achieved benefit. Further, reporting rates of Lactobacillus bacteremia between cohorts unmatched for important characteristics except for probiotic use does not inform on relative risk.

Importantly for the broader situation of probiotic use, the ICU population is not reflective of the general population, so this study does not allow us to draw conclusions about safety of L. rhamnosus GG use in non-ICU patients.

We recognize the value of careful tracking of potential probiotic-associated infections and appreciate the application of bacterial genomic sequencing to identify the probiotic in the blood. Used more widely, this approach could resolve many purported claims of probiotic bacteremia.

This paper serves as an important reminder that use of probiotics in critically ill patients must be carefully considered and practice must align with learnings from the past, including the risk of central line contamination with probiotics. In addition, this paper highlights the importance of knowing the exact strain (including its antibiotic resistance profile and preferentially also its genome sequence), so that in the rare case of bacteremia, appropriate antibiotics can be administered.

See related article: Hill, C. Balancing the risks and rewards of live biotherapeuticsNat Rev Gastroenterol Hepatol (2019)

See here for an additional related open-access publication: Probiotic use in at-risk populations. Sanders et al. 2014.