Posts

Episode 8: The link between digestive symptoms, IBS and the gut microbiota: A gastroenterologist’s perspective

The Science, Microbes & Health Podcast 

This podcast covers emerging topics and challenges in the science of probiotics, prebiotics, synbiotics, postbiotics and fermented foods. This is the podcast of The International Scientific Association for Probiotics and Prebiotic (ISAPP), a nonprofit scientific organization dedicated to advancing the science of these fields.

The link between digestive symptoms, IBS and the gut microbiota: A gastroenterologist’s perspective, with Prof. Eamonn Quigley

Episode summary:

In this episode, the ISAPP hosts focus their discussion around irritable bowel syndrome (IBS) with Prof. Eamonn Quigley, MD, of Weill Cornell Medical College. Prof. Quigley says patients are increasingly curious about the link between IBS and gut microbiota. He outlines what we know so far about the etiology of IBS, and the evidence for how gut microbiota may contribute to the condition as well as possible interventions that target the gut microbes.

Key topics from this episode:

  • What are the symptoms of IBS?
    The typical symptoms is abdominal pain associated with a disturbance in bowel function which could be diarrhea or constipation, or even alternating between them, depending on the patient.
  • How prevalent is IBS?
    Estimates say 5-10% of all people globally have IBS.
  • What is the etiology of IBS?
    There is no clear cause for IBS identified to date. IBS has been linked to the gut-brain axis (as it often co-occurs with depression and anxiety), gut microbiota, diet, previous gastrointestinal infections (Salmonella, Shigella, Campylobacter infections), and antibiotic use. It is also more common in women.
  • How is IBS treated?
    Approaches have tended to focus on treatment of symptoms: for example, treating the pain or diarrhea. Diet has also become an essential part of IBS treatment. But overall quality of life for IBS patients is of crucial importance. The focus should not be only on treating symptoms but also on improving their quality of life.
  • Are probiotics effective for IBS? A short history and perspective on how to develop probiotics for IBS.
  • Effects of the COVID-19 pandemic and COVID-19 infections in IBS patients – lessons learned from other viral infections. 
  • Is the gut microbiota the “Holy Grail” for gastrointestinal health? We still have a lot to learn, especially regarding clinical applications.

 

Episode abbreviations and links:

FODMAP: fermentable oligosaccharides, disaccharides, monosaccharides and polyols (i.e. types of carbohydrates that are poorly absorbed in the small intestine).

EMA: European Medicines Agency (i.e. the European counterpart of the US Food and Drug Administration)

Study: Lactobacillus and bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to cytokine profiles

CME course on digestion and gut microbiota: Android version, iOS version, web version

 

Additional resources:

I have IBS – should I have my microbiome tested? ISAPP blog
The Microbiome — Can it aid in the diagnosis and therapy of irritable bowel syndrome (IBS)? ISAPP blog

 

About Prof. Eamonn Quigley:

Eamonn M M Quigley MD FRCP FACP MACG FRCPI MWGO is David M Underwood Chair of Medicine in Digestive Disorders and Chief of the Division of Gastroenterology and Hepatology at Houston Methodist Hospital. A native of Cork, Ireland, he graduated in medicine from University College Cork. He trained in internal medicine in Glasgow, completed a two-year research fellowship at the Mayo Clinic and training in gastroenterology in Manchester, UK. He joined the University of Nebraska Medical Center in 1986 where he rose to become Chief of Gastroenterology and Hepatology. Returning to Cork in 1998 he served as Dean of the Medical School and a PI at the Alimentary Pharmabiotic Center. He served as president of the American College of Gastroenterology and the WGO and as editor-in-chief of the American Journal of Gastroenterology.

Interests include IBS, gastrointestinal motility and the role of gut microbiota in health and disease. He has authored over 1000 publications and has received awards and honorary titles world-wide. Married for over 40 years to Dr Una O’Sullivan they have 4 children and three grandchildren. Interests outside of medicine include literature, music and sport and rugby, in particular; Dr Quigley remains a passionate supporter of Munster and Irish rugby.

Episode 7: Evidence for probiotic use in pediatric populations

The Science, Microbes & Health Podcast 

This podcast covers emerging topics and challenges in the science of probiotics, prebiotics, synbiotics, postbiotics and fermented foods. This is the podcast of The International Scientific Association for Probiotics and Prebiotic (ISAPP), a nonprofit scientific organization dedicated to advancing the science of these fields.

Evidence for probiotic use in pediatric populations, with Prof. Michael Cabana

Episode summary:

In this episode, the ISAPP hosts discuss probiotics for pediatric populations with Prof. Michael Cabana, MD, MPH, from Albert Einstein College of Medicine and The Children’s Hospital at Montefiore. Prof. Cabana starts by acknowledging the gap between the demand for probiotic interventions and the evidence that currently exists for their efficacy. He gives an overview of the challenges in designing trials on probiotic interventions for children, and summarizes what the evidence shows to date.

Key topics from this episode:

  • A concerning gap exists between the strength of evidence for probiotic interventions in children and the high demand by parents for these interventions.
  • A clinician supports clinical recommendations if they are based on multiple high-quality randomized, controlled trials in different settings. Unfortunately, this level of evidence is often missing for pediatric interventions, including for probiotics.
  • A clinician is less concerned about what regulatory category (drug, supplement) a recommendation falls into, and more about the level of evidence supporting its use.
  • At a minimum, a clinician looks first for evidence of no harm.
  • Conducting clinical trials in children presents many challenges. What are the “5 Ds”, which make clinical studies in children different from those in adults, as described by Forrest in 1997?
  • A lot of adult diseases have roots in childhood, so understanding pediatric health is important not just for kids, but also for adults. Preventing adult disease starts at an early age. This is the ‘delayed payoff’ that Forrest refers to.
  • Compelling evidence exists for probiotic efficacy in children for a few endpoints: colic, antibiotic-associated diarrhea, and necrotizing enterocolitis.
  • When it comes to necrotizing enterocolitis, strong evidence, reproducibility, dose-response, and biological mechanisms are what give clinicians the confidence to use probiotics.
  • An individual patient data meta-analysis (a project that emerged from an ISAPP meeting), enabled combining data from numerous studies that looked at the probiotic L. reuteri DSM17938 given to babies with colic. An overall positive effect was seen. Factors that predicted success in infants were being formula-fed, being younger, and not being on proton pump inhibitors.

 

Episode links:

  • One of many reports on the growing market for probiotic products for infants and children 
  • Information about the 2003 Pediatric Research Equity Act (PREA) and the Best Pharmaceuticals for Children Act (BPCA) mentioned in the podcast 
  • The 5 “Ds” in Pediatrics mentioned in the podcast
  • The TIPS study mentioned in the podcast is described here and here
  • The meta-analysis on colic mentioned in the podcast

 

Additional resources:

ISAPP Digs Deeper into Evidence on Probiotics for Colic with New Meta-Analysis. ISAPP blog
Probiotics to Prevent Necrotizing Enterocolitis: Moving to Evidence-Based Use. ISAPP blog

 

About Prof. Michael Cabana, MD:

Prof. Michael Cabana, MD, MPH, is a Professor of Pediatrics & the Michael I. Cohen University Chair of Pediatrics at Albert Einstein College of Medicine, as well as Physician-in-Chief, The Children’s Hospital at Montefiore (CHAM). He is also a member of the United States Preventive Services Task Force USPSTF (here), a prestigious appointment for medical personnel to weigh evidence (risk vs. harms) on prevention interventions recommended in the United States. He is a clinical trialist (see the trials listed here), with a focus on allergy in children. He has also conducted trials using probiotic interventions. Prof. Cabana served on the ISAPP board of directors from 2008 to 2018. He has an MD from University of Pennsylvania, an MPH from Johns Hopkins, and an MA in business from Wharton Business School.

Dr. Cabana’s comments do not necessarily reflect the views of the USPSTF.

Episode 6: Mechanisms of action for probiotics

The Science, Microbes & Health Podcast 

This podcast covers emerging topics and challenges in the science of probiotics, prebiotics, synbiotics, postbiotics and fermented foods. This is the podcast of The International Scientific Association for Probiotics and Prebiotic (ISAPP), a nonprofit scientific organization dedicated to advancing the science of these fields.

Mechanisms of action for probiotics, with Prof. Sarah Lebeer

Episode summary:

In this episode, the ISAPP hosts speak with Prof. Sarah Lebeer of University of Antwerp, Belgium, to bring clarity to a commonly misunderstood topic: probiotic mechanisms of action. They discuss how probiotic mechanisms are often multi-factorial and difficult to unravel scientifically. Nevertheless, Prof. Lebeer describes five distinct mechanisms of action by which a probiotic may benefit a host.

See ISAPP’s other podcast episode on mechanisms of action, with Prof. Maria Marco: Why mechanistic research on probiotics is captivating and important.

Key topics from this episode:

  • Probiotics are live microorganisms with documented health benefits; their mode of action is multifactorial.
  • Mechanism of action is crucial in the probiotic field. This knowledge helps scientists understand how probiotics interact with the human host and the microbiota. However, even if mode of action for a strain is known it can be difficult to translate it into measurable outcomes for the host.
  • Probiotics can benefit health by five main mechanisms of action applicable at different body sites (gut, vagina, skin, nose, etc.):
    1. Modulation of microbe-microbe interactions by inhibiting pathogens and promoting beneficial microbes. This is based on the production of metabolically active molecules, such as lactic acid. 
    2. Enhancement of mucosal barrier function through interaction with epithelial cells, promoting the integrity of the barrier. 
    3. Modulation of immune responses by interacting with various immune cells. Interaction with the immune cells is also the clearest strain-specific capacity of probiotics.
    4. Modulation of metabolic responses by modulating insulin resistance or cholesterol metabolism. This mode of action is novel, and research is emerging.
    5. Modulation of neurological signaling pathways. This is also a novel mode of action with new evidence building up.
  • Postbiotics can have similar modes of action, provided the active molecules are not inactivated.

 

Episode links:

The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic

 

Graphical summary of 5 main mechanisms of action for probiotics

(Image by Sarah Lebeer. Image copyright.)

 

Additional resources:

Current status of research on probiotic and prebiotic mechanisms of action. ISAPP blog
Importance of understanding probiotic mechanisms of action. ISAPP blog

 

About Prof. Sarah Lebeer:

Sarah Lebeer is a research professor at the Department of Bioscience Engineering of the University of Antwerp, Belgium. She has studied bioscience engineering, with a specialisation in cell and gene technology/food & health and obtained her Master at KU Leuven (Belgium). In 2008, she obtained a PhD degree with a topic on the mode of action of gastro-intestinal probiotics in inflammatory bowel diseases and a scholarship in the team of Prof. Jos Vanderleyden (KU Leuven). After a postdoc on the interaction between lactobacilli, viruses and mucosal immunology, in November 2011, she was offered a tenure track position at the University of Antwerp. Since then, she is leading the Laboratory for Applied Microbiology and Biotechnology of the ENdEMIC research group.

In 2020, she was awarded with an ERC Starting Grant that enables her to gain more in-depth knowledge of the evolutionary history and ecology of lactobacilli (https://www.lebeerlab.com). This rationale was also an important driving force to revise the Lactobacillus genus taxonomy with  a large international consortium. Within the ERC project, Sarah has also launched the Isala citizen-science project to gain new insights in the role of vaginal lactobacilli for women’s health (https://isala.be). Since 2018, Sarah is an academic board member of the International Scientific Association on Probiotics and Prebiotics (www.isappscience.org). Communicating about beneficial microbes and probiotics for experts and laymen is an important inspiration for her daily work. 

Episode 5: Prebiotics for animal health

The Science, Microbes & Health Podcast 

This podcast covers emerging topics and challenges in the science of probiotics, prebiotics, synbiotics, postbiotics and fermented foods. This is the podcast of The International Scientific Association for Probiotics and Prebiotic (ISAPP), a nonprofit scientific organization dedicated to advancing the science of these fields.

Prebiotics for animal health, with Prof. George Fahey

Episode summary:

The hosts discuss prebiotics for animals with Prof. George Fahey, a prominent animal nutrition scientist who is currently Professor Emeritus at University of Illinois. Fahey explains how animal nutrition research relates to human nutrition research, and the changes in the field he has seen over the course of his long career. He describes the research on prebiotics for animal nutrition, covering both livestock and companion animals.

Key topics from this episode:

  • A short history of animal prebiotics research as well as future opportunities in animal nutrition.
  • Pro- and prebiotics are being explored as an alternative to antibiotic treatment in production animals. Antibiotics are overused, leading to an increase in antibiotic resistance; the “biotics” therefore have great potential in animal nutrition.
  • Probiotics can potentially be used instead of antibiotics to inhibit pathogens and support the gut microbiota in animals.
  • Prebiotics possibly have high nutritional value and beneficial effects in animals, especially in poultry and pigs.
  • There are limitations to using prebiotics in the animal industry, especially for some animals such as horses and ruminants.
  • There has been increased use of prebiotics for companion animals (pets) in the past few years. Now many pet foods contain prebiotics.
  • Benefits of using prebiotics in companion animals:
    •  Support digestive health
    •  Improve stool quality
    • Support the gut microbiota, which also translates to good stool quality
  • A short overview of how companion animals’ food is produced, and the timing of adding prebiotics.
  • Wild animals’ diet has low nutrition with limited to no prebiotic intake, resulting in a shorter lifespan in comparison with companion animals
  • Some take-home points from animal models and animal nutrition research.

 

Episode links:

Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics
The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic

 

Additional resources:

Are prebiotics good for dogs and cats? An animal gut health expert explains. ISAPP blog post
Using probiotics to support digestive health for dogs. ISAPP blog post
Prebiotics. ISAPP infographic

 

About Prof. George Fahey:

George C. Fahey, Jr. is Professor Emeritus of Animal Sciences and Nutritional Sciences at the University of Illinois at Urbana-Champaign. He served on the faculty since 1976 and held research, teaching, and administrative appointments. His research was in the area of carbohydrate nutrition of animals and humans. He published numerous books, book chapters, journal articles, and research abstracts.

He currently serves on two editorial boards, numerous GRAS expert panels, and is scientific advisor to both industry and governmental organizations. He retired from the University in 2010 but continues to serve on graduate student committees and departmental search committees. He owns Fahey Nutrition Consulting, Inc. that provides services to the human and pet food industries.

Episode 2: Why mechanistic research on probiotics is captivating and important

The Science, Microbes & Health Podcast 

This podcast covers emerging topics and challenges in the science of probiotics, prebiotics, synbiotics, postbiotics and fermented foods. This is the podcast of The International Scientific Association for Probiotics and Prebiotic (ISAPP), a nonprofit scientific organization dedicated to advancing the science of these fields.

Why mechanistic research on probiotics is captivating and important, with Prof. Maria Marco

Episode summary:

In this episode, the ISAPP hosts discuss probiotic mechanisms of action with Prof. Maria Marco, University of California, Davis. Prof. Marco is a well-known probiotic researcher with special expertise in food-associated lactobacilli. Here she explains how studying probiotics in food science can lead to fundamental insights in biology. She shares why it’s important to understand probiotic mechanisms of action, and describes how scientists go about identifying which compounds or pathways are important for probiotic health effects.

Key topics from this episode:

  • The search for probiotic mechanisms of action: why this research is essential and the added value of this type of research for the end consumer.
  • What we now understand about probiotic mode of action: probiotic mode of action for different strains is mediated by multiple working mechanisms, from cell-wall-associated molecules to bacteriocin production and metabolite synthesis.
  • How researchers set the stage for studying probiotics’ mode of action, from large scale screening, to molecular techniques focusing on single molecules and genome comparisons between strains.
  • Whether we need to apply something similar to Koch’s postulates when talking about the effects of probiotics.
  • The potential effects of food or delivery matrix on a probiotic mechanism of action.  
  • What we can learn from the postbiotic research, which can help inform probiotic mechanisms of action.
  • The most exciting developments in probiotic mode of action research in the past 10 years and the future of this area of research.

 

Episode links:

The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic
Prof. Marco refers to two of her mentors, Willem De Vos and Michiel Kleerebezem
See this overview of Koch’s postulates

 

Additional resources:

Bacterial genes lead researchers to discover a new way that lactic acid bacteria can make energy and thrive in their environments, ISAPP blog post featuring recent work from Prof. Marco’s lab

 

About Prof. Maria Marco:

Maria Marco is a Professor in the Department of Food Science and Technology and Chair of the Food Science Graduate Group at the University of California, Davis. She received her PhD in microbiology from the University of California, Berkeley and then was a postdoc and project leader at NIZO Food Research, The Netherlands. Dr. Marco has 20 years’ experience investigating fermented foods, probiotics, and diet-dependent, host-microbe interactions in digestive tract. Her laboratory at UC Davis is broadly engaged in the study of food and intestinal microbiomes and the ecology and genetics of lactic acid bacteria. 

ISAPP awards the Glenn Gibson Early Career Research Prize to two diet and gut health researchers

The ISAPP board of directors is pleased to announce that the 2022 Glenn Gibson Early Career Research Prize has been awarded to two promising researchers in the field of probiotics, prebiotics and related substances.

Dr. Martin Laursen, Senior Researcher at the National Food Institute, Technical University of Denmark, has demonstrated excellence in his work on the impact of probiotics and human milk oligosaccharides on infant gut microbiota and health. Dr. Eirini Dimidi, Lecturer at King’s College in London, UK, has carried out meaningful work on probiotics, prebiotics, and fermented foods and their impact on constipation.

The award criteria stipulated that the researchers must be fewer than five years from their terminal degree, and their scope of research must be basic or clinical research disciplines in the fields of probiotics, prebiotics, synbiotics, postbiotics or fermented foods. In addition, the researchers were required to show evidence of a significant research finding and its publication(s), new ideas that advance the field, and / or evidence of impact through citizenship, general outreach, social media or other means.

The prize committee chose the two recipients from among dozens of applicants and identified each of them as having made important contributions to the field at this early stage in their scientific careers. Each winner will receive a cash prize and an opportunity to speak at the ISAPP annual meeting, to be held in Spain in June, 2022.

Stay tuned to learn more about these rising star researchers!

See here for details about the 2022 Glenn Gibson Early Career Research Prize

Bacterial vesicles: Emerging potential postbiotics

By Dr. Gabriel Vinderola, PhD,  Associate Professor of Microbiology at the Faculty of Chemical Engineering from the National University of Litoral and Principal Researcher from CONICET at Dairy Products Institute (CONICET-UNL), Santa Fe, Argentina

The recently published ISAPP consensus paper defines a postbiotic as “a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host“. Such a definition quickly brings to mind that a postbiotic is not equivalent to microbial metabolites. A postbiotic should also contain inanimate microbial cells or cell fragments. Metabolites or fermentation products may be present, but they are not required.

Because microbes are complex entities, we must be open to innovative understandings of what a postbiotic might entail. Indeed, although not explicitly mentioned in the ISAPP consensus paper, extracellular membrane vesicles may comprise an innovative conceptualization of a postbiotic, falling within the ‘cell component’ part of the postbiotic definition.

Bacterial vesicles

Extracellular membrane vesicles (EMV) are universal carriers of biological information produced in all domains of life. Bacterial EMV are small, spheroidal, membrane-derived proteoliposomal nanostructures, typically ranging from 25 – 250 nm in diameter, containing proteins, lipids, nucleic acids, metabolites, numerous surface molecules and many other biomolecules derived from their progenitor bacteria (Figure 1). Bacterial vesicles have been known for more than 50 years as structures able to carry cellular material (Ñahui Palomino et al. 2021).  However, studies on membrane vesicles derived from Gram-positive bacteria are more recent as it was for a time believed they were incapable of producing vesicles due to their thick and complex cell walls, and the lack of an outer membrane. Today, EMVs have been isolated from Gram-positive probiotic bacteria, including those belonging to the Lactobacillaceae family (under which Lactobacillus was recently split into many new genera) and the Bifidobacterium genus. In probiotic bacteria, vesicles may mediate quorum sensing and material exchange. Perhaps even more important, they can act as mediators of bacteria-to-cell and bacteria-to-bacteria interactions. As bacterial EMV are inanimate structures that cannot replicate, they fit the postbiotic definiton as cell components as long as other criteria stipulated by the definition are met.

Figure 1. Membrane vesicles budding on the surface of L. reuteri DSM 17938 and released into the surrounding medium. These vesicles were described in by Grande et al. 2017. Photo used with permission of BioGaia.

Functions of bacterial vesicles related to potential health benefits

Underlying mechanisms and corresponding molecules driving health effects of bacterial vesicles are not well understood, in part due to reliance on in vitro models. Bacterial EMV derived from Lactobacillaceae spp., Bifidobacterium spp., and Akkermansia spp. have been reported to alleviate metabolic syndrome and allergy symptoms, promote T-cell activation and IgA production, strengthen gut barrier function, and exhibit anti-viral and immunomodulatory properties (Kim et al. 2016; Tan et al. 2018; Ashrafian et al. 2019; Molina-Tijeras et al. 2019; Palomino et al. 2019; Shehata et al. 2019; Bäuerl et al. 2020). Interestingly, vesicles from Limosilactobacillus reuteri DSM 17938 (West et al. 2020) and Lacticaseibacillus casei BL23 (Domínguez Rubio et al. 2017) may accomplish some of the the effects of these probiotic bacteria. In fact it is not unreasonable to think that EMVs may be already present and active in probiotic products.

Challenges for bacterial vesicle production

To develop a postbiotic from microbial EMVs, many challenges need to be overcome.  Defining optimal cultivation conditions, and methods for vesicle release, isolation and scaling up are some of the challenges of bacterial vesicle production. There are several studies showing that altering the cultivation parameters can impact vesicle production. Examples of treatments shown to increase vesicle release include exposure to UV radiation and antibiotic pressure (Gamalier et al. 2017; Gill et al. 2019). Exposure to glycine has also been shown to increase vesicle production (Hirayama & Nakao 2020). Interventions during culture, for example by introducing agitation and varying pH, can possibly be ways to potentiate vesicle release and increase their bioactivity (Müller et al. 2021). A recent report also revealed that B. longum NCC2705 released a myriad of vesicles when cultured in human fecal fermentation broth, but not in basal GAM anaerobic medium (Figure 1). Moreover, the B. longum vesicle production pattern differed among individual fecal samples suggesting that metabolites derived from symbiotic microbiota stimulate the active production of vesicles in a different manner (Nishiyama et al. 2020). Whether any of these treatments and culture conditions are general or strain specific remains to be elucidated. Large differences in the number of vesicles that may be obtained by different extraction methods can occur (Tian et al. 2020). Tangential flow filtration or the use of antibodies targeting specific epitopes of the vesicles are some of the options proposed for the large scale isolation of EMV (Klimentová & Stulík 2015).

Figure 2. Left: Bifidobacterium longum NCC2705 grown on GAM broth. Right: secretion of membrane vesicles by Bifidobacterium longum NCC2705: the strain was cultured in bacterial-free human fecal fermentation broth and secreted a myriad of membrane vesicles. Reported and adapted from Nishiyama et al. 2020.

Progress has been made on the production of bacterial vesicles in recent years, yet several issues remain to be clarified including how vesicles are generated from the progenitor microbe, how the composition of vesicles changes according to the culture conditions, how to target specific bacterial vesicle purification from a pool of vesicles derived from other organisms (for example, bacterial vesicles produced in milky media can be accompanied by vesicles from eukaryotic cells present in the milk), safety aspects, quantification methods and the regulation of their use by the corresponding authority.

Their future as potential postbiotics

Membrane vesicles are an exciting opportunity for the development of postbiotics. A potential benefit of vesicles is that their small size compared to whole cells may enable them to more readily migrate to host tissues that could not be otherwise reached by a whole cell (Kulp & Kuehn 2010). Their nanostructure enables them to penetrate through the gut barrier and to be delivered to previously unreachable sites through the bloodstream or lymphatic vessels, and to interact with different cell types (Jones et al. 2020). For example, bacterial rRNA and rDNA found in the bloodstream and the brain of Alzheimer’s patients were postulated to have originated from bacteria vesicles (Park et al. 2017). Safety of EMVs must be carefully considered and assessed, even if they are derived from microbes generally recognized as safe, as their small size may increase penetration capacity with potential and yet unknown systemic effects. Novel postbiotics derived from microbial membrane vesicles is an intriguing area for future research to better understand production parameters, safety and functionality.

Thanks to Cheng Chung Yong, postdoctoral researcher at Morinaga Milk Industry Co., LTD (Japan) and Ludwig Lundqvist, industrial PhD student at BioGaia AB (Sweden) for their contributions to this blog, and Mary Ellen Sanders and Sarah Lebeer from ISAPP for fruitful discussions.

References

Ashrafian, F., Shahriary, A., Behrouzi, A., Moradi, H.R., Keshavarz Azizi Raftar, S., Lari, A., Hadifar, S., Yaghoubfar, R., Ahmadi Badi, S., Khatami, S. and Vaziri, F., 2019. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Frontiers in microbiology10, p.2155.

Bäuerl, C., Coll-Marqués, J.M., Tarazona-González, C. and Pérez-Martínez, G., 2020. Lactobacillus casei extracellular vesicles stimulate EGFR pathway likely due to the presence of proteins P40 and P75 bound to their surface. Scientific reports10(1), pp.1-12.

Domínguez Rubio, A.P., Martínez, J.H., Martínez Casillas, D.C., Coluccio Leskow, F., Piuri, M. and Pérez, O.E., 2017. Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect. Frontiers in microbiology8, p.1783.

Gamalier, J.P., Silva, T.P., Zarantonello, V., Dias, F.F. and Melo, R.C., 2017. Increased production of outer membrane vesicles by cultured freshwater bacteria in response to ultraviolet radiation. Microbiological research194, pp.38-46.

Grande, R., Celia, C., Mincione, G., Stringaro, A., Di Marzio, L., Colone, M., Di Marcantonio, M.C., Savino, L., Puca, V., Santoliquido, R. and Locatelli, M., 2017. Detection and physicochemical characterization of membrane vesicles (MVs) of Lactobacillus reuteri DSM 17938. Frontiers in microbiology8, p.1040.

Gill, S., Catchpole, R. & Forterre, P., 2019. Extracellular membrane vesicles in the three domains of life and beyond. FEMS microbiology reviews, 43(3), pp.273–303.

Hirayama, S. & Nakao, R., 2020. Glycine significantly enhances bacterial membrane vesicle production: a powerful approach for isolation of LPS-reduced membrane vesicles of probiotic Escherichia coli. Microbial biotechnology, 13(4), pp.1162–1178.

Jones, E.J., Booth, C., Fonseca, S., Parker, A., Cross, K., Miquel-Clopés, A., Hautefort, I., Mayer, U., Wileman, T., Stentz, R. and Carding, S.R., 2020. The uptake, trafficking, and biodistribution of Bacteroides thetaiotaomicron generated outer membrane vesicles. Frontiers in microbiology11, p.57.

Kim, J.H., Jeun, E.J., Hong, C.P., Kim, S.H., Jang, M.S., Lee, E.J., Moon, S.J., Yun, C.H., Im, S.H., Jeong, S.G. and Park, B.Y., 2016. Extracellular vesicle–derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression. Journal of Allergy and Clinical Immunology137(2), pp.507-516.

Kulp, A. & Kuehn, M.J., 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annual review of microbiology, 64, pp.163–184.

Molina-Tijeras, J.A., Gálvez, J. & Rodríguez-Cabezas, M.E., 2019. The immunomodulatory properties of extracellular vesicles derived from probiotics: a novel approach for the management of gastrointestinal diseases. Nutrients, 11(5), p.1038.

Müller, L., Kuhn, T., Koch, M. and Fuhrmann, G., 2021. Stimulation of probiotic bacteria induces release of membrane vesicles with augmented anti-inflammatory activity. ACS Applied Bio Materials4(5), pp.3739-3748.

Ñahui Palomino, R.A., Vanpouille, C., Costantini, P.E. and Margolis, L., 2021. Microbiota–host communications: Bacterial extracellular vesicles as a common language. PLoS Pathogens17(5), p.e1009508.

Nishiyama, K., Takaki, T., Sugiyama, M., Fukuda, I., Aiso, M., Mukai, T., Odamaki, T., Xiao, J. Z., Osawa, R., & Okada, N. 2020. Extracellular vesicles produced by Bifidobacterium longum export mucin-binding proteins. Applied and Environmental Microbiology, 86(19), e01464-20.

Palomino, R.A.Ñ., Vanpouille, C., Laghi, L., Parolin, C., Melikov, K., Backlund, P., Vitali, B. and Margolis, L., 2019. Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues. Nature communications10(1), pp.1-14.

Park, J.Y., Choi, J., Lee, Y., Lee, J.E., Lee, E.H., Kwon, H.J., Yang, J., Jeong, B.R., Kim, Y.K. and Han, P.L., 2017. Metagenome analysis of bodily microbiota in a mouse model of Alzheimer disease using bacteria-derived membrane vesicles in blood. Experimental neurobiology26(6), p.369.

Shehata, M.M., Mostafa, A., Teubner, L., Mahmoud, S.H., Kandeil, A., Elshesheny, R., Boubak, T.A., Frantz, R., Pietra, L.L., Pleschka, S. and Osman, A., 2019. Bacterial outer membrane vesicles (omvs)-based dual vaccine for influenza a h1n1 virus and mers-cov. Vaccines7(2), p.46.

Tan, K., Li, R., Huang, X. and Liu, Q., 2018. Outer membrane vesicles: current status and future direction of these novel vaccine adjuvants. Frontiers in microbiology9, p.783.

Tian, Y., Gong, M., Hu, Y., Liu, H., Zhang, W., Zhang, M., Hu, X., Aubert, D., Zhu, S., Wu, L. and Yan, X., 2020. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. Journal of extracellular vesicles9(1), p.1697028.

West, C.L., Stanisz, A.M., Mao, Y.K., Champagne-Jorgensen, K., Bienenstock, J. and Kunze, W.A., 2020. Microvesicles from Lactobacillus reuteri (DSM-17938) completely reproduce modulation of gut motility by bacteria in mice. PloS one15(1

Opportunity for research grants to help understand evidence linking live dietary microbes and health

For thousands of years, cultures across the globe have been consuming fermented foods, many of which contain diverse and numerous live microbes. Yet scientists are still puzzling over whether a greater intake of live microbes results in measurably better health. As part of long-term efforts to understand evidence for the health benefits of live dietary microbes and identify research gaps, ILSI North America is presenting a grant opportunity for researchers to help assess current scientific evidence for these links.

Researchers are invited to submit grant proposals, which should include the research approach along with anticipated challenges, resources, timeline, and key deliverables. The ILSI North America Gut Microbiome Committee also requests the inclusion of a suggested publication plan for the work. Budgets in the range of $100-150K will be considered. The deadline to submit the proposal is October 30, 2020 at 11:59PM EST. See here for more details.

ISAPP is supporting long-term efforts in this topic area. Its latest effort is the publication of a review paper (in press) on the links between dietary live microbes and health, called Should there be a recommended daily intake of microbes? The paper is authored by ISAPP board members Prof. Maria Marco, Prof. Colin Hill, Prof. Bob Hutkins, Prof. Dan Tancredi, Prof. Dan Merenstein, and Dr. Mary Ellen Sanders along with well-known nutrition researcher, Prof. Joanne Slavin.

ILSI North America is a non-profit scientific organization whose mission is to advance food safety and nutrition science for the benefit of public health. The organization engages academic, government, and industry experts by conducting­ research projects, workshops, seminars, and publications.

 

Connecting with the ISAPP community: Continuing to advance the science of probiotics and prebiotics

By Mary Ellen Sanders PhD, executive science officer, ISAPP

On behalf of the ISAPP board of directors, I am reaching out to the ISAPP community to say we hope you are doing well and taking all the necessary steps in your local communities to remain healthy. At present, the global ISAPP community is physically distant but digitally close, and it is important for us to remain connected and strong.

ISAPP’s activities are as important as ever during this time of increased attention to health, and ISAPP is continuing to uphold its commitment to (1) stewardship, (2) advancing the science, and (3) working with stakeholders. Although our annual meeting, which some of you may have initially planned to attend, has been cancelled, other ISAPP activities are continuing or expanding as follows:

 

  • Building on an important topic for our annual meeting, ISAPP is working to develop a strategic approach to communicating the science on probiotics, prebiotics, fermented foods, synbiotics, and postbiotics.
  • The ISAPP board of directors is pleased that our founding board members, Profs. Gregor Reid and Glenn Gibson, have agreed to remain on the board until the 2021 meeting, in particular to help with long-range planning. New academic board members will also be elected, thereby expanding the board. Working together, we will bring fresh insights, strategies and global reach.
  • The board is considering how best to approach our cancelled meeting. In lieu of re-scheduling this year’s in-person meeting, we are planning to have virtual content covering some of the originally scheduled topics. Some discussion group topics will be carried over to the 2021 meeting, while others will be addressed virtually. We will communicate further on this soon.
  • Our newsletter will continue on a monthly basis.
  • Blog postings, which are aimed at either consumers or scientists, remain timely and popular – with new contributions posted on average every 2-3 weeks. Authored by board members and other experts in the field, these blogs provide a forum for opinions and observations on current issues and controversies as well as insights on global fermented foods, critical regulatory actions, and other relevant topics.
  • ISAPP filed comments on March 17 with the American Gastroenterological Association in response to their draft recommendations for probiotic use in GI conditions.
  • Spearheaded by former ISAPP IAC representative to the board, Dr. Roberta Grimaldi, ISAPP has subtitled several of the most popular ISAPP videos in different languages, including Dutch, French, Spanish, Russian, Japanese, Italian and Indonesian. The first of these should be posted by end of April.
  • The ISAPP-Students and Fellows Association has launched a blog program to provide perspectives by young scientists on issues of importance to the probiotic and prebiotic fields. They have also submitted a manuscript to Frontiers in Microbiology discussing a toolkit needed for their future in science: “Future of probiotics and prebiotics: an early career researchers’ perspective”.
  • Three consensus panels have been conducted since May of 2019. A manuscript arising from the synbiotics panel, chaired by Prof. Kelly Swanson, is in press with Nature Reviews Gastroenterology and Hepatology. The paper summarizing the consensus panel on fermented foods, chaired by Profs. Robert Hutkins and Maria Marco, is almost ready for submission to Nature Reviews Gastroenterology and Hepatology. A manuscript from the consensus panel on postbiotics, chaired by Prof. Seppo Salminen, is currently being written. All three papers are expected to provide clarity to the field with regard to definition of terms, current evidence for health benefits, and impact on stakeholders.
  • In addition to the three consensus panel papers in progress, several different ISAPP endeavors are at different stages of publication:
    • ISAPP vice president, Prof. Dan Merenstein, and executive science officer, Dr. Mary Ellen Sanders, worked with biostatistician and frequent ISAPP contributor, Prof. Dan Tancredi, to summarize evidence for clinical endpoints for probiotics, to be published in the Journal of Family Physicians. This paper, titled “Probiotics as a Tx resource in primary care”. The paper is currently in press.
    • Several ISAPP board members and other participants in a 2019 meeting discussion group recently submitted to Current Developments in Nutrition a paper titled “Dietary Recommendation on Adequate Intake of Live Microbes: A Path Forward”.
    • Marla Cunningham, the current IAC representative to the ISAPP board, has led an effort to compile results from the IAC Learning Forum from the 2019 ISAPP meeting on the topic of matrix effects impacting probiotic and prebiotic functionality. Manuscript in preparation.
    • Colin Hill and I represented ISAPP on a paper under review at Nutrients initiated by IPA-Europe titled “Criteria to qualify microorganisms as ‘probiotic’ in foods and dietary supplements”. This paper consolidates and fleshes out minimum criteria for use of the term ‘probiotic’ published by different groups, including the 2002 FAO/WHO working group, the 2014 ISAPP consensus paper on probiotics, and the 2018 ISAPP discussion group on global harmonization.
    • Glenn Gibson and Marla Cunningham are coordinating a paper titled “The future of probiotics and prebiotics in human health” as an output from their 2019 discussion group.

See here for all published ISAPP papers.

ISAPP board members, 2019 annual meeting

Messages about probiotics and COVID-19

With many conflicting and confusing health messages circulating during this global pandemic, including some criticisms of our field as well as some unsupported claims made by certain individuals and companies, ISAPP will remain an important touchstone for scientifically accurate information. Focusing on health effects is key to demonstrating probiotic and prebiotic efficacy, and we acknowledge that human studies are the ultimate measure of efficacy, but also, elucidating mechanisms of action help us understand how these interventions interface with the immune system and other mediators of health.  Currently, there is some evidence that certain probiotics/prebiotics can reduce the risk of viral infections (discussed in other blog posts here and here), but it is important to remember that they have not been studied specifically for COVID-19 prevention or treatment. This must be acknowledged when communicating with the wider community.

We greatly appreciate the continued support of our IAC members. The ISAPP Board, colleagues, and SFA will continue to chart a course forward in preparation for life after the pandemic. Our intent is to emerge from these experiences more connected and purposeful than ever. We welcome suggestions on how collectively we can endure and strengthen the science and communications that remain foundations of our field.

 

 

 

ISAPP Students and Fellows Association announce blog posting: A new way to share our work and perspectives

By Anna-Ursula Happel, president ISAPP-SFA and postdoctoral fellow at the Faculty of Health Sciences at the University of Cape Town, South Africa

Our professors keep telling us to write, write, write. Reports, papers, reviews, presentations. You can’t blame them as that’s what most of them had to do, and in a competitive environment academic output is critical. But while professors urge students to produce academic outputs, there’s a whole world of research ‘impact’ in a digital world that is beginning to matter for career advancement. To further our reach along this axis, we as the ISAPP-Students and Fellows Association (SFA) are launching a blog platform, which will be regularly updated with perspectives from our members and ideas on recent developments in the field of probiotics and prebiotics.

Our very first blog post centered on an innovative project I never thought I would hear about. Through our SFA meeting, I had heard about the Reid lab from Western University in Canada trying to find a way to prevent the decline of honey bee populations. It was a shock, since their focus for years has been women’s health. My first question to one of Dr. Reid’s students, Brendan Daisley, was: How did this come about? It turns out, the interest in how environmental toxins affect humans led to wondering how it helped really important pollinators. Not such a tangential switch as I’d thought. But what’s this got to do with the field of probiotics and my career?

Well, it shows that probiotics, as the definition states, can be applied to many hosts. It also shows that the microbiome plays a role in the health of insects as well as humans. And many of the study tools are the same – microbiota analysis, bioinformatics, immune responses, etc., yet some are totally different – using Drosophila models, counting larvae, measuring honey volumes. Read more about it here. The lesson for me: think laterally, look at how you can apply your knowledge, think of ecosystem health, and learn lots of basic skills.

Then, I thought to myself, how can research provide me with opportunities for developing leadership, initiatives and skills that are valuable for my careers. How can I gain visibility as an early-career researcher, grow my networks, improve my writing and scientific communication skills and find a platform to highlight projects that matter to me? The new blog will be helpful for all of this.

As members of the SFA, we’re very fortunate to have our voices heard; to organize our own annual meeting (well, except for 2020 when the world shut down); to be exposed to amazing scientists and ground breaking ideas – and to communicate our work, ideas and perspectives to a broad audience through our new blog. Beyond formal networking at annual meetings, the SFA blog now offers a way to stay actively connected throughout the entire year on a more informal platform with our peers, may strengthen ties within the community and even lead to collaborations and career opportunities.

See here for the ISAPP-SFA blog — bookmark it or watch for new posts on social media!

Twitter: @ISAPPSFA

 

YOGURITO –the Argentinian social program with a special yogurt

Dra. María Pía Taranto, CERELA-CONICET, Argentina and Prof. Seppo Salminen PhD, University of Turku, Finland

It is widely accepted that technologies play a central role in the processes of social change. The Argentinian experience has documented that yogurt can be a promising tool for promoting social development.  The program is called “Scholar Yogurito, the social probiotic” and the probiotic product is called “Yogurito”. This social program began with the development of a probiotic food, in the form of yogurt. This yogurt contains the probiotic strain Lactobacillus rhamnosus CRL1505, whose functional and technological characteristics are widely documented by CERELA-CONICET researchers. These researchers conducted clinical studies that demonstrated that the consumption of this probiotic product improves natural defenses and prevents respiratory and intestinal infections, the infectious events of greatest relevance in childhood. The “Yogurito Social Program” benefits some 300,000 schoolchildren in the province of Tucumán and some 50,000 in other provinces and municipalities of Argentina. This social transfer project, implemented in 2008 in the province of Tucumán, is a paradigm of interaction between the scientific sector, the manufacturing sector and the state, to improve the quality of life of highly vulnerable populations.

The social and economic implications for such translational research are significant and especially pertinent for people living in poverty, with malnutrition and exposure to environmental toxins and infectious diseases including HIV and malaria. This example of probiotic applications illustrates the power of microbes to positively impact the lives of women, men, and children, right across the food value chain. The researchers are looking for grants that would enable them to compare outcomes of schools given Yogurito to schools with no participation in the program.

 

Additional reading:

Julio Villena, Susana Salva, Martha Núñez, Josefina Corzo, René Tolaba, Julio Faedda, Graciela Font and Susana Alvarez. Probiotics for Everyone! The Novel Immunobiotic Lactobacillus rhamnosus CRL1505 and the Beginning of Social Probiotic Programs in Argentina. International Journal of Biotechnology for Wellness Industries, 2012, 1, 189-198.

Reid G, Kort R, Alvarez S, Bourdet-Sicard R, Benoit V, Cunningham M, Saulnier DM, van Hylckama Vlieg JET, Verstraelen H, Sybesma W. Expanding the reach of probiotics through social enterprises. Benef Microbes. 2018 Sep 18;9(5):707-715. doi: 10.3920/BM2018.0015.

 Senior Researcher Maria Pia Taranto and the Yogurito product

 

Maria Luz  Ovejero, a teacher at Primary School 252 Manuel Arroyo y Pinedo, explains probiotics to 4-6 year old children in Tucuman province in Argentina

Role of citizen science in research on fermented foods

By Prof. Sarah Lebeer, Universiteit Antwerpen

Spontaneous vegetable fermentations, with their rich flavors and potential health benefits, are regaining popularity among chefs and the general public. Famous Michelin star chefs, such as Belgium’s Kobe Desramaults, have implemented fermented vegetables in their recipes and offer fermented vegetable juices as non-alcoholic alternatives to wine. Serendipity was surely at play when I made contact with Kobe and his team, and had the opportunity to explore the microbial life of many of his fermented food and beverages.

Thanks to this spontaneous collaboration, I became intrigued by fermented vegetables as a promising alternative to dairy probiotic matrices. They have several benefits:

  • they are lactose-free
  • they contain no milk allergens
  • they are naturally vitamin-, antioxidant- and fiber-rich
  • they are vegan, satisfying the growing dietary trend

 

Together with prof. L. De Vuyst – a fermented food specialist from the VUB University in Brussels – we attracted a talented PhD student Sander Wuyts to study Lactobacillus’ role in the spontaneous fermentation process of carrot juices. I admit that fermented carrot juice is not the tastiest beverage I ever drank, but the fermentation process turned out to be scientifically intriguing: it appeared to be a robust, man-made microbial ecosystem dominated by lactic acid bacteria. We now often use this fermentation process in my lab as a model to study various aspects of niche-adaptation and niche-flexibility of lactic acid bacteria (LAB). And if you mix carrot juice with another fresh vegetable juice, such as cucumber, you’ll be surprised by its interesting light acidic flavor!

But perhaps the most rewarding part about our fermented-vegetables project was that we managed to carry out a Citizen Science project with the Flemish name, Ferme Pekes. You could translate it as ‘Fantastic Carrots’ 😊. Forty citizens volunteered to set up their own carrot juice fermentations at home and delivered with great enthusiasm samples of different time points. The carrots originated from their own garden, the supermarket or organic stores. Our analysis indicated that origin or organic compared to conventional product did not impact the microbial community composition. But we also could show that the LABs – first Leuconostoc then Lactobacillus – out-competed the undesirable Enterobacteriaceae after 3 to 13 days of fermentation. Longer times were needed for carrots derived from winter storage.

Our analyses (phylogenetic placement and comparative genomics, which was recently published in Applied and Environmental Microbiology) also indicated that a high LAB diversity was achieved in the different spontaneous fermentations. This is of interest if you believe it is important to let our immune system come into contact with a large and naturally diverse dose of beneficial bacteria. This idea has been promoted through the years as the hygiene hypothesis or microbial deprivation theory and aligns perfectly with the surge of interest in the health benefits of naturally fermented foods. See the recent ISAPP blog from Prof. Colin Hill, who advocates for the idea of a recommended daily allowance of consumption of live microbes.  (See also a related ISAPP blog here.) Such guidelines should be taken with precaution: the fermentations must be done properly with regard to food safety (see ISAPP blog on Making Safe Fermented Foods at Home).

Citizen Science refers to projects where citizens are actively involved in scientific studies, although it has various definitions and descriptions. In our case, it allowed us to obtain a much larger and more diverse set of samples than we could have created in the lab. Furthermore, the opportunity to directly (on e.g. workshops for adults and kids or at delivery of their samples) or indirectly (as a response to articles in the popular press) communicate with citizens helped us greatly in identifying which other research questions might be of importance for the general public. This approach is increasingly implemented in the fermented food and microbiome field. There are examples of fantastic projects such as on sourdough from Rob Dunn, Benjamin Wolfe and colleagues, the Global FoodOmics initiative and the Flemish Gut Flora project, which will also be presented by Dr. Gwen Falony at our next ISAPP meeting in Antwerp. I am not aware of a Citizen Science project in the probiotic or prebiotic area, but it might be a good idea for a joint ISAPP initiative, for science communication, the creation of richer datasets, validation/confirmation of probiotic efficacy, inspiration for future research questions, for example.

probiotics for healthy people infographic

ISAPP releases new infographic: “Probiotics for Healthy People”

November 20, 2017. Probiotics are most commonly studied with for populations with a specific condition—frequent examples include diarrhea, irritable bowel syndrome, and pouchitis. But what kind of evidence exists on probiotics for healthy people?

A new ISAPP infographic gives an overview of what we know about the use of probiotics in healthy individuals. The resource was developed by ISAPP’s Science Translation Committee and approved by  the ISAPP board of directors.

“Studying health benefits in healthy people is a challenge. But there is evidence that probiotics can provide dietary management of some digestive conditions that don’t reach the level of diagnosed disease as well as prevent of some common infectious diseases and. These, and other benefits, are of value to healthy people,” says ISAPP’s Executive Science Officer, Dr. Mary Ellen Sanders. The new infographic  emphasizes it is not necessary to take probiotics to be in good health, but they may serve as a useful addition to a healthy lifestyle.

Research investigating how probiotics can affect healthy individuals through their microbiomes is ongoing in laboratories around the world, and ISAPP continues to track the latest findings.