Posts

The small intestinal ‘mysteriome’: A potentially important but uncharted microbiome

By Eamonn MM Quigley MD FRCP FACP MACG FRCPI, Lynda K and David M Underwood, Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital, Houston, Texas, USA

 

Over recent years, countless publications have documented the status of the microbiota of the gastrointestinal tract by examining fecal samples. While this approach does provide a “snapshot” or representation of what is going on in the gut, and especially in the colon, it is a crude measure of the complex interactions between micro-organisms in the gut, as well as between these same microorganisms and us (their hosts). Fecal samples comprise a terminal microbial ecosystem, characterized by depletion of readily fermentable substrates, with a concomitant change in microbial composition, even compared to those farther upstream in the colon. It is unlikely, for example, that studies using fecal samples provide a full picture of what happens when bacteria (or other microorganisms) “talk” to the lining of the gut (the mucosa) or interact with the immune system of the intestine. Even less likely is that they provide any insights into bacterial populations in the small intestine, where most of the digestion of food and absorption of nutrients takes place. The small intestine also possesses the most abundant immune tissue of the entire gastrointestinal tract.

Yet, details of which bacteria actually inhabit this long and important organ, the small intestine, are sketchy. This lack of knowledge has apparently not restricted much theorizing and speculation about the role of an overgrowth of colonic-type bacteria (referred to as small intestinal bacterial overgrowth – SIBO) in the small intestine in many symptoms, disorders, and diseases. According to one especially popular theory – the “leaky gut” hypothesis – the list of conditions is nearly endless. The “leaky gut” hypothesizes that dysbiosis in the small intestine (in other words SIBO) and a disruption of the gut barrier leads to “leakage” of bacteria and bacterial products into the circulation causing inflammation, allergy, and autoimmunity.

There are several leaps of faith involved in “leaky gut” including, of course, the definition and diagnosis of SIBO. Traditional methods of diagnosing SIBO (obtaining fluid samples directly from the upper small intestine or a variety of breath tests) are fraught with problems and, in essence, have precluded a universally accepted definition of SIBO.

Fundamental to this dilemma is the definition of the normal small intestinal microbiome – how can we diagnose abnormal when we do not know the limits of normality? I would contend that, while there are situations where it is undoubted (based on the clinical context and various laboratory and other findings) that SIBO is an issue, there are countless more instances where SIBO is over-diagnosed and incorrectly implicated as the cause of an individual’s symptoms. This is an important issue as it can lead to the inappropriate use of antibiotics – something we all wish to avoid.

There is some good news – clever techniques exist for obtaining uncontaminated fluid samples from the small intestine, a capsule technology that permits live sampling of intestinal gases (generated by bacteria) as it traverses the intestine and the application, at last, of high-throughput sequencing, metagenomics, metabolomics, and metatranscriptomics to small intestinal microbiota suggest that the accurate definition of the normal small intestinal microbiome is not far off. At that time, we can all agree on an accurate and clinically meaningful definition of SIBO.

 

Is probiotic colonization essential?

By Prof. Maria Marco, PhD, Department of Food Science & Technology, University of California, Davis

It is increasingly appreciated by consumers, physicians, and researchers alike that the human digestive tract is colonized by trillions of bacteria and many of those bacterial colonists have important roles in promoting human health. Because of this association between the gut microbiota and health, it seems appropriate to suggest that probiotics consumed in foods, beverages, or dietary supplements should also colonize the human digestive tract. But do probiotics really colonize? What is meant by the term “colonization” in the first place? If probiotics don’t colonize, does that mean that they are ineffective? In that case, should we be searching for new probiotic strains that have colonization potential?

My answer to the first question is no – probiotics generally do not colonize the digestive tract or other sites on the human body. Before leaping to conclusions on what this means for probiotic efficacy, “colonization” as defined here means the permanent, or at least long-term (weeks, months, or years) establishment at a specific body site. Colonization can also result in engraftment with consequential changes to the gut microbiota composition and function. For colonization to occur, the probiotic should multiply and form a stably replicating population. This outcome is distinct from a more transient, short-term (a few days to a week or so) persistence of a probiotic. For transient probiotics, it has been shown in numerous ways that they are metabolically active in the intestine and might even grow and divide. However, they are not expected to replicate to high numbers or displace members of the native gut microbiota.

Although some studies have shown that digestive tracts of infants can be colonized by probiotics (weeks to months), the intestinal persistence times of probiotic strains in children and adults is generally much shorter, lasting only few days. This difference is likely due to the resident gut microbiota that develops during infancy and tends to remain relatively stable throughout adulthood. Even with perturbations caused by antibiotics or foodborne illness, the gut microbiome tends to be resilient to the long-term establishment of exogenous bacterial strains. In instances where probiotic colonization or long-term persistence was found, colonization potential has been attributed more permissive gut microbiomes specific to certain individuals. In either case, for colonization to occur, any introduced probiotic has to overcome the significant ecological constraints inherent to existing, stable ecosystems.

Photo by http://benvandenbroecke.be/ Copyright, ISAPP 2019.

This leads to the next question: Can probiotics confer health benefits even if they do not colonize? My answer is definitely yes! Human studies on probiotics with positive outcomes have not relied on intestinal colonization by those microbes to cause an effect. Instead of colonizing, probiotics can alter the digestive tract in other ways such as by producing metabolites that modulate the activity of the gut microbiota or stimulate the intestinal epithelium directly. These effects could happen even on short-time scales, ranging from minutes to hours.

Should we be searching for new probiotic strains that have greater colonization potential? By extension of what we know about the resident human gut microbiota, it is increasingly attractive to identify bacteria that colonize the human digestive tract in the same way. In some situations, colonization might be preferred or even essential to impacting health, such as by engrafting a microbe that performs critical metabolic functions in the gut (e.g. break down complex carbohydrates). However, colonization also comes with risks of unintended consequences and the loss of ability to control the dose, frequency, and duration of exposure to that particular microbe.

Just as most pharmaceutical drugs have a transient impact on the human body, why should we expect more from probiotics? Many medications need to be taken life-long in order manage chronic conditions. Single or even repeated doses of any medication are similarly not expected to cure disease. Therefore, we should not assume a priori that any observed variations in probiotic efficacy are due to a lack of colonization. To the contrary, the consumption of probiotics could be sufficient for a ripple effect in the intestine, subtly altering the responses of the gut microbiome and intestinal epithelium in ways that are amplified throughout the body. Instead of aiming for engraftment directly or hand-wringing due to a lack of colonization, understanding the precise molecular interactions and cause/effect consequences of probiotic introduction will lead to a path that ultimately determines whether colonization is needed or just a distraction.

The threat of disease – Ignore science at your peril

By Dr. Karen Scott, University of Aberdeen

We live in an age when life expectancy has increased and many diseases that used to be fatal are curable. Much of this is the result of years of efforts by dedicated scientists, painstakingly working out the causes of diseases, and then the best way to treat or prevent them. Yet the high profile of social media can boost the profile of results from poorly conducted studies, sometimes even beyond the publicity received by the original seminal results. Responsible scientists are partly to blame for this. We are a cagey bunch, frequently suffixing stories about our wonderful successes with caveats, maybes and the recurring refrain “more research is needed”. Those spreading sensationalist publicity have no such qualms.

Take vaccination for diseases caused by viruses. In 1796, Dr Edward Jenner realised that milk parlour girls did not seem to get small pox and theorised that they were protected from the devastating disease due to their continual exposure to the less dangerous cow pox virus. He proceeded to prove his theory by inoculating many people with cow pox, and then exposing them to the small pox virus. Although the experiment would nowadays perhaps be considered unethical, it worked and people infected with cow pox did not get small pox. This heralded the start of vaccination, a huge medical advance that has since protected millions of people from contracting polio, measles, mumps, rabies, tuberculosis and many more devastating diseases. In the 19th Century, Louis Pasteur advanced the method, using inactivated viruses as the inoculation. Vaccination has been so successful that small pox was ‘officially’ eradicated globally in 1979, and the polio vaccine, which was developed in 1955, has led to the virtual world-wide elimination of polio.

But more and more people people are declining to vaccinate their children. The very success of the vaccination scheme may be why it is now in danger. People have forgotten the devastating consequences and lasting effects of these diseases. In the western world it is now unusual to see people crippled by the effects of childhood polio. What about measles? Prior to vaccination, measles was a highly contagious disease, spreading through water droplets in air when an infected person sneezed. Forty percent of those with measles develop complications including pneumonia (which is often the case of measles-related deaths), deafness, blindness and encephalitis (brain swelling), which can even cause brain damage. If the patient survives, the effects of such complications can last for life. Yes – measles, a disease fully preventable by vaccination, kills. I was struck by a recent story about Roald Dahl, whose daughter sadly died after contracting measles when she was seven (see here). In 1986 Roald Dahl wrote an open letter describing his experience, encouraging people to vaccinate their children. The post was illustrated with a picture of a ward full of children suffering from polio, all confined in iron lungs as their breathing had been so badly affected due to paralysis of their chest muscles. No one can want to return to that.

Another contributor to reduced vaccination rates are reports that vaccinations cause more harm than good. Such reports are sustained in part by non-science-based social media claims. Even when original scientific reports are discredited, many parents continue to decide not to vaccinate their children.

How will these “anti-vaccination” parents/carers feel, sitting at the bedside of their critically ill child trying to make sense of the doctor’s explanation that even if their child pulls through, they will never be able to see again? Or explaining to their grown up child that he will never be able to father children due to an almost forgotten childhood disease? All because Mum and/or Dad paid more attention to a campaign on social media with no scientific basis, than to medical advice supported by decades of evidence? Yes, there are instances of people becoming ill with the diseases themselves, or suffering rare side effects of vaccination, but these are rare and pale in comparison to the morbidity and mortality prevented by vaccinations. After all, these same people do not stop driving their car to work when they hear that someone else had an accident doing so. The huge decline in epidemics of viral diseases following the introduction of vaccination programmes speaks to their effectiveness. The vaccine for measles was introduced in 1968 and is estimated to have prevented 20 million cases of measles and 4,500 deaths. In fact the vaccination programme was so successful that it led to the UK being declared ‘measles free’ in 2017.

 

 

 

 

 

 

 

Source – Public Health England; University of Oxford Vaccine Knowledge Project

Yet countries that we travel to on holiday still have measles outbreaks so it is still crucial to get children vaccinated. Even in the US and UK, the large increase in non-vaccinated children means that measles outbreaks (starting with people catching the disease abroad) are becoming more common – evidenced by the second graph above. An alarming statistic is that there are more cases of measles in 2018 than there were in 1998.

Increased numbers of unvaccinated people pose a threat to society at large. Herd immunity can protect a small number of unvaccinated individuals. Indeed, some individuals cannot be effectively vaccinated, including very young infants or when there is a problem with their immune system. But when the number of unvaccinated people rises, these viruses can ‘find’ susceptible hosts and take root once again in the population. This puts our most vulnerable society members at risk. The decision to not immunize is not a victimless decision. We need to maintain vaccination programmes on a global scale, to maintain ‘herd immunity’ and halt the current increase in the numbers of cases occurring.

Bottom line – vaccination works and prevents needless suffering from preventable diseases.

Another day, another negative headline about probiotics?

By Prof. Colin Hill, PhD, APC Microbiome Ireland, University College Cork, Ireland

Scientists have a particular job. We try to discover what is unknown and we want to help to create a better understanding of the underlying forces, both physical and biological, that underpin our amazing universe. It is usually a slow and meticulous process. Gathering data usually takes weeks, or months, or years of work and so there is plenty of time to consider the numerous possible interpretations and the limitations and gaps in our understanding. Everything has to be repeated and subjected to statistical analysis. Finally, we publish our findings and our interpretation of that carefully accumulated data. Even this process takes weeks or months (or years) because of discussions with fellow authors and colleagues, numerous drafts of the manuscript, peer review and editorial comment. We are very aware that whatever we have published will almost certainly be repeated, or built upon, and if we are wrong (in either our data or our interpretation) that it will not withstand the test of time. Thus, we are slow and cautious and often qualify our findings with “this suggests” or “this strongly suggests” and we often finish with the unavoidable conclusion that “more research needs to be done”.

Journalists have a particular job. Journalists have to react quickly, perhaps in minutes or hours, to a breaking story or a commission from their editors, on topics with which they may not be familiar, and write short articles or present short pieces to camera that will appeal to the public and have a clear message. Nuance and complexity must often be left for long-form journalism or that as-yet unwritten novel. Being slow and complete and debating all of the possible interpretations is simply not an option. Finishing up with a cautious, equivocal “on the one hand, but also on the other hand” is also not really an option. Very few journalistic pieces end with “more journalism needs to be done”. It may also be difficult to construct a story along the lines of “some good science was well performed and led to careful and understated conclusions, which should really be repeated before we get too excited”.

It is not surprising then that scientists and journalists can sometimes find themselves at loggerheads. “Do probiotics work?” is a very reasonable question that a journalist can ask a scientist. “Well,” responds the scientist, “that depends on what you mean by ‘work’, and which probiotic you are asking about, and for what condition, and quite often strains are called probiotics but they do not fit the definition, and of course, there was that paper published last year which showed ……”. Cue frustration on both sides. Why can’t the scientist just answer the question? And why can’t the journalist understand that just because a question can be simply stated does not mean that it has a simple answer? Ask a doctor “do pills work?” and you might very well get a similarly convoluted answer, but no one would think it evasive. No wonder the scientist sometimes ends up reading the resultant article in frustration – how did the journalist come to that conclusion, where did all my careful explanations go? Of course, most scientists are imagining his or her scientific colleagues reading the article and wondering at the ‘incomplete’ or ‘trivial’ response. While the journalist may well wonder what planet the scientist lives on if he or she thinks that the editor is going to publish a long essay capturing all of the subtlety of the research.

This almost certainly comes across as me implying that scientists are impeccable purveyors of truth and that journalists are willing to sacrifice truth for simplicity, but I truly am not suggesting that. In almost every instance there is no bad faith involved from either party, it is simply the consequence of the different demands placed on two very different and very valuable roles in society.

So, these things will happen. We will see newspaper articles and online pieces (or editorial comments in journals) that do not contain all the nuance and complexity of the complex paper which it is based. We will see press articles that draw simple and reader-friendly conclusions. “Probiotics quite useless”, “Are probiotics money down the toilet? Or worse?”, etc. So, how should we respond? Do we write erudite articles pointing out the limitations of the commentator, coming across perhaps as arrogant or supercilious? [And yes, of course I use the words erudite and supercilious because it makes me feel better than you.] Do we send angry missives complaining about the article, and perhaps risk drawing further attention to it?

If you are asked by a journalist to comment on a paper, or if your local/national paper or favourite website has published an article that you think is unfair, perhaps the way to respond is to have a few simple questions of your own which can be put to journalists and/or readers. Perhaps we can use a checklist such as the following:

  • Is the article describing an original piece of research and was it published in a reputable, peer-reviewed journal?
  • What evidence is there that the strain or strain mix in question is actually a probiotic? Does it fit the very clear probiotic definition?
  • Was the study a registered human trial? How many subjects were involved? Was it blinded and conducted to a high standard?
  • What evidence was presented of the dose administered and was the strain still viable at the time of administration.
  • Were the end points of the study clear and measurable? Are they biologically or clinically significant to the subjects?
  • Did the authors actually use the words contained in the headline? “Useless”, or “waste of money”, etc?

Once these relatively simple questions are answered, then we can move on to the details and the complexities, but that is not where we should start. Of course, if a study is well performed and reaches a negative conclusion we should absolutely acknowledge that. But we can still point out that one strain or strain mix not working under one set of conditions is only evidence of the fact that one particular strain or strain mix does not work under one particular set of conditions. It does not warrant a blanket condemnation or criticism of all probiotics. Maybe ask the journalist to think about the obvious flaws in the headline ‘Headache pill does not cure cancer, all pills obviously a waste of money!”, and ask why the same standards should not be applied to probiotics?

Scientists and journalists have different roles in society, that is clear, but we can assume a priori that both have clear motives and do not want to mislead readers. Let’s start from there and make it easier for both sides to work together to make the public aware of the very real potential, and very real limitations, of probiotics and prebiotics in preserving health in a society in dire need of practical solutions.

The Art of Interpretation

By Prof. Gregor Reid, BSc Hons PhD MBA ARM CCM Dr HS, Lawson Research Institute, University of Western Ontario, Canada

It takes a certain degree of intelligence to become a scientist, and certainly hard work to be able to fund a lab and students. Yet, is it not bemusing when scientists cannot interpret simple things like definitions and the results of human studies?

I’ve written repeatedly, as have others, about the definition of probiotics (in case you forgot – “Live microorganisms that, (or which) when administered in adequate amounts, confer a health benefit on the host”),1,2 and yet people look at it and must think that ‘dead’ fits, as does ‘consume’, as does ‘colonize’. It beggar’s belief how such a simple definition can be so badly interpreted by intelligent people.

Time after time papers I review mis-write and/or misinterpret the definition. Conference after conference, I hear dieticians, pharmacists, physicians, scientists not only get the definition wrong, but say things like ‘the probiotics in kombucha’ when there are none, ‘we have lots of probiotics in our gut’ when you don’t unless you consumed them, ‘the lactobacilli need to colonize’ when this was never a prerequisite nor does it happen except in rare instances.

The interpretation gets more difficult when people use terms that are completely undefined like ‘psycho-biotics’ and ‘post-biotics’. Even ‘dead probiotics’ have been used in clinical trials – God help us when the authors can’t even define it. Why stop at killing probiotic strains? Why not just kill any bacterial strain? Even the gut-brain axis which is now mentioned everywhere in the literature is undefined and unproven. The vagus nerve links to many body sites as does the nervous system, making it exceedingly difficult to prove that brain responses are only due to the gut microbes.

Everyone can site a manuscript that has been badly analyzed, interpreted or peer-reviewed, or whose findings are overblown. But let’s not excuse this as ‘it’s just science’ or ‘it’s just the way it is.’ No, it is not. When a paper uses a product that is stated to be ‘probiotic’, there is an onus on the authors to make sure the product meets the appropriate criteria. These have been stated over and over again and reiterated this March, 2019.3

If scientists and science writers are really that smart, then how do they keep getting this wrong? How do we let a poorly analyzed paper get published and allow authors to say that Bacteroides fragilis is a probiotic that can treat autism?4,5 And when this leads to companies claiming probiotics can treat autism, why do other scientists convey cynicism for the field instead of against their colleagues and specific companies making the false claims?

Where does opinion cross the line with ignorance or stupidity? Martin Luther King Jr. must have predicted life today when he said, “Nothing in all the world is more dangerous than sincere ignorance and conscientious stupidity.”

Is it envy or anger that drives the anti-probiotic sentiments? It seems to go far beyond a difference of opinion. When the BBC and JAMA fail to comment on two much better and larger studies on the effects of probiotics published6,7 at the same time as the ones in Cell8,9 that were promoted by press releases, what is driving opinion? The science or the press releases? Are the journalists and communications’ people interpreting study results vigorously? One cannot believe they are.

In an era where anyone can write anything at any time and pass it along to the world, what are we recipients to do? Just go with our instincts? Soon, we will not know the difference between fact and fake news. The avatars will be so real, we will act on falsehoods without knowing. When all news is fake, where does that leave us as people, never mind scientists?

Manuscripts are sent for peer-review but how many reviewers are experts in bioinformatics, molecular genetics, clinical medicine, biostatistics and what happens on the front line of products to consumers or patients? Like it or not, poor studies will get out there and it will be the media who will tell the story and interpret the findings or press releases.

One must hope that confirmatory science will continue and if it fails, the writers and readers will stop citing the original incorrect report. But how often does that happen? And what are we left with?

It takes effort to object or fight back, but if we don’t then the fake news will become the norm.

Try interpreting that if you will.

 

Literature Cited

  1.  FAO/WHO. 2001. Probiotics in food.  http://www.fao.org/food/food-safety-quality/a-z-index/probiotics/en/
  2. Hill C. et al. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotics. Nat. Reviews Gastroenterol. Hepatol. 11(8):506-14.
  3. Reid G. et al. 2019. Probiotics: reiterating what they are and what they are not. Front. Microbiol. 10: article 424.
  4. Hsiao et al. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 155(7):1451-63.
  5. Sharon G, et al. 2016. The central nervous system and the gut microbiome. Cell. 167(4):915-932.
  6. Korpela K. et al. 2018. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome. 6(1):182.
  7. De Wolfe, T.J. et al. 2018. Oral probiotic combination of Lactobacillus and Bifidobacterium alters the gastrointestinal microbiota during antibiotic treatment for Clostridium difficile infection. PLoS One. 13(9):e0204253.
  8. Suez J. et al. (2018). Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018 Sep 6;174(6):1406-1423.e16.
  9. Zmora N. et al. 2018. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. Sep 6;174(6):1388-1405.e21.

ISAPP Releases New Infographic – Probiotic Checklist: Making a Smart Selection

Not all products labelled “probiotic” are true probiotics. ISAPP just released a new infographic focused on helping consumers make smart selections when examining probiotic products. The infographic addresses identifying products backed by science, effective dosing, and more.

See and download the full infographic here.

See all ISAPP infographics here.

 

science hard blog

Those who can’t do science, do science communication?

By Dr. Colin Hill

See what I did there?  I used a title which I hope will attract the attention (or wrath) of science communicators but then put a question mark which allows me to disagree with the hypothesis posed – a good science communication bit of ‘click-baiting’.

But now that I have hopefully got your attention, let me expand on my views of how science is communicated.  By way of disclosure, I am involved in a research centre, APC Microbiome Ireland, which has a mandate from Science Foundation Ireland for each scientist to actively participate in public engagement.  This is something I initially resented, on the premise that anything mandatory should be resisted, but I have begun to appreciate that it is an important obligation for active scientists to support science communication – hence this blog and sporadic attempts to tweet and engage with the outside world.  We are very lucky to have dedicated and talented science communicators in the APC, with an extraordinarily wide brief of engaging with schoolkids, students, clinicians, industry and the general public.  To argue against my provocative title, let me make it clear our APC communicators are highly qualified and talented scientists who could easily have ‘made it’ in scientific research in academia or industry, but chose to develop their skills in science communication.

My main issue is the widespread attempts to portray science as ‘fun’ to young people.  Most science communicators dealing with adults do a great job, albeit unfortunately the message is sometimes coloured by the need to make the story interesting by linking it to a headline proclaiming a ‘new cure for cancer’ or a ‘breakthrough on superbugs’.  But it is mainly the manner of communicating to younger people that worries me.  Scientists are largely perceived as nerds by the general public, and certainly by print and online media, even more so again by film and TV, but perhaps the most by scientists themselves.  Is this why we feel a need to persuade people that scientists are actually fun-loving and cool?  Perhaps the only sure way of not appearing cool is for adults to try to explain to a young person just how cool they are. Obviously, using the word ‘cool’ so often makes it abundantly clear that I am certainly NOT cool.  ‘Serious’ professions like medicine, law, or business do not try to persuade people that their careers are fun.  If you don’t believe me then try a simple exercise.  Do a Google Image search for ‘science’, and then for ‘law’ or ‘business’ or ‘medicine’.  As a hint, one set of images is dominated by cartoons, the other three are not.

I also cringe when I see science programmes on TV aimed at younger people, often with ‘zany’ presenters showing how science can be so much fun.  Let me quote from a 2015 Sunday Times TV review of an Irish science programme. ‘Silliness in the name of science was a recurring feature of [programme name omitted], a series that veered wildly between the youthfully exuberant and the childishly skittish….  Science TV (presenters) have been supplanted by giddy MCs who seem capable of speaking only in a cheerleading register’.  As a contrast, David Attenborough is the ultimate science presenter, never talking down to his audience, never dumbing down difficult ecological concepts, but retaining a genuine enthusiasm and deep knowledge of his subject.  He is never fun, but his message is clear and engaging.

Surely it is more important to communicate just how important science is to modern life and invite the next generation to join in, rather than to emphasise science as a fun career.  How could you get up every morning to a fun job?  You would go mad within a few weeks.  I have never found science to be fun.  I have found it to be challenging, frustrating, exciting, exacting, rewarding and infuriating in equal measures.  If you regard being the first person in human history to learn something new about our universe as ‘fun’, then so be it.  I would rather characterise it as a humbling and thrilling experience.  We should be clear in our messaging.  Scientists conceived and created the world we live in.  We (the computer scientists and physicists) made possible the smartphone or laptop upon which you are almost certainly reading this.  You may well only be alive because of medical interventions such as antibiotics provided by us (the chemists and biologists) and you can only be fed in such large numbers as a result of our efforts (animal and plant scientists, food scientists).  Why then do we feel a need to claim ‘science is fun’ in order to attract the brightest and best young people into science?

This blog is aimed both at science communicators and scientists alike.  We work in the most important career of all, in the only profession that can ensure a future for our race and our planet.  We have the most important roles in all of human activity – discovering and understanding our universe.  So let’s try again with a new message to attract the brightest and the best – “Science is hard, but that is exactly what makes it worth doing”.

hill blog industry

Academics working with industry  

by Dr. Colin Hill, APC Microbiome Ireland & School of Microbiology, University College Cork, Ireland

Many scientists have reservations about working with industry.  While characterising it as going over to the dark side might be an overstatement, there is a certain wariness that principles may have to be compromised (in terms of the ambition of the work and the freedom to follow your nose that is the supposed hallmark of ‘pure’ research), dull routine work may have to be performed, and publication in the best journals will be unlikely.  There may also be concerns that students or post-docs working on ‘industry’ projects may suffer from these constraints, which will restrict their career development.  There can also be a perception that the ‘best’ scientists work on fundamental problems, unfettered by the demands of industrial partners or short-term commercial goals.  Some of you reading this opening paragraph may be amused at the simplicity of this stereotyping  – “no one really thinks like that” – but I can assure you that some do, including a younger version of myself.

I have only really worked closely with industry in the last decade.  Before that, I wrote grants which assured potential funding agencies that what I wanted to investigate was incredibly relevant and important, would represent good value for the taxpayers’ investment, but was just a ‘little bit too early’ for industry to take on.  I genuinely believed this for the most part, although part of getting older is learning that fooling myself has always been a much easier task than fooling anyone else.  Nonetheless, I managed to forge a career in science.  I had a reasonable success rate of about one in four or five applications, which still seemed a poor return for the effort involved.  I would take my hard-earned funding and do my best to deliver on the promises I had made.  On occasion, the grants were successful, and we ended up filing a patent or developing a prototype or a process and essentially delivering on the promises made in the grant application.  But all too often I discovered that what we had achieved, or the problem we had solved, was not really the burning issue I had thought it to be, or at least could not be translated for the benefit of society without suitable industry partners.  In essence, we had self-tasked ourselves to solve a problem that no one really needed to be solved (or, at least not yet, or not in the precise manner we had solved it).

Of course, on occasion I was successful in getting truly ‘fundamental’ or ‘basic’ grants which were simply aimed at generating knowledge, and these were absolutely vital in developing new skills and opening up new research areas and possibilities.  However, over the past decade or more, I have begun to work closely with industry partners.  At first, this was driven by changes in funding policy in Ireland which linked scientific excellence to industry relevance – grants had to pass rigorous peer-reviewed scientific assessment, but also had to be validated by an industry partner willing to put skin in the game in the form of co-funding.  This necessitated finding industry partners and identifying a research problem together, before developing a solution.  I hope that now I have a perspective on both aspects of scientific research – often simplistically referred to as basic versus applied research – and I have good news.  Working with industry can be just as scientifically rewarding as not working with industry.

As I have experienced it, working with industry has several obvious advantages.

  1. Relevance. You know the research problem posed is one that genuinely needs solving, and the industrial partner for any solution you may develop is already engaged.
  2. Funding. Once you begin to work with an industry partner, the prospect of getting funding is much higher than in most competitive grant applications and the amount available may be defined by the extent of the problem, not the limit of a particular funding call.
  3. Intellectual capital. Most of the industry people you will be dealing with are also scientists, and they are just as clever, or far cleverer, than you (or me).  They will have defined goals but also have the same scientific curiosity which can be harnessed within the project.
  4. Flexibility. If you have embarked on the project and you find you have gone down a blind alley, it is usually possible to have a discussion with your partners and change the project design.  You don’t have to go back to the funders for permission to adjust the dreaded Gantt chart and ‘deliverables’, or have to justify to grant reviewers why you have gone off track. If a project extension is required you can often simply argue for it, no need to write a new grant and experience the inevitable downtime ‘between funding’.
  5. Urgency. Working with a student or a post-doc on a problem can be exciting, but sometimes a good or a bad result seems important only to the two of you.  It really adds urgency when an industry meeting is looming on the horizon, when you know the funders are directly invested in the outcomes of the experiments, and when the pressure really builds on the team.  In these moments some intense brainstorming and problem-solving can be required, which can create a real sense of excitement within the project and which can be a tremendous learning experience for junior members of the team.
  6. Career development. Most of the students and postdocs in the lab will not end up in academia, nor should they.  It is valuable training for young scientists to have a first-hand exposure to industry-based science so that they can make an informed choice on their next step in their career.

Are there negatives?  Well, honestly, not all industry sponsored research involves cutting edge science.  But if you are completely uninterested in the outcomes then don’t take it on.  What about bias?  Does industry funding create a bias towards positive outcomes?  I genuinely have not found this to be the case.  Reputable industry partners have no interest in biased results, since the company’s reputation is at stake and of course, no one is more invested in the scientific validity of their product than the industry partner.  And given that science is ultimately self-correcting no reputable scientist wants to be associated with misleading outcomes.  Individuals on either side can make mistakes or display bias, but that is no less true in the basic sciences.

The ideal academic-industry relationship recognises that there have to be rewards for both partners.  For both it is really important that the experiments be conducted to the highest possible standards with appropriate controls.  For the academic the right to publish the results in a timely fashion is particularly important when junior scientists are involved and a clear understanding of how results will be disseminated must be reached before the collaboration gets underway.  For the industry partner, it is important that the work stay focused on the agreed goals of the project and not veer off into the ‘nice to know’ rather than ‘need to know’ areas of the research problem.  As in most things, problems can be avoided by having a clear agreement on the goals, methods and publication strategy and having transparent reporting structures. Further, both sides must put effort into maintaining a good working relationship.

Finally, it is not a binary choice – working with industry obviously does not close off any other type of research you may want to perform.  You can still write grants and get funding from other sources.  In fact, I would propose that the ideal research mix requires an element of exploratory science to keep the laboratory fresh and industry-funded science to ensure relevance.  And when in doubt always defer to the great Louis Pasteur, who said “There are no such things as applied sciences, only applications of science”.

Talking Science with ISAPP’s Science Translation Committee

By Christopher Cifelli, PhD, VP of Nutrition Research, National Dairy Council.

Communicating with others is an essential part of everyday life. We are constantly sharing information about a variety of topics with friends, family, and even strangers. Most of the time the interaction is easy and natural – and sometimes even fun. But, have you ever talked to a scientist or asked a scientist a question?

Scientists love to talk about their research. And, other scientists want other to know about their research. They enjoy expounding on the minute details of their work and can spend hours on the littlest detail. That is one trait that makes a scientist effective – the attention to detail needed to posit hypotheses and then experimentally test them in controlled, thought-out manners. Scientists can talk to other scientists easily – but, ask some of them to explain their work to the average person and it doesn’t always go so well.

ISAPP is composed of scientists that are world-renowned experts on probiotics, prebiotics, and fermented foods. And, like other scientists, ISAPP wants others to know and understand these complex topics so that they can make informed decisions that may benefit their health. The question was – how does ISAPP do that? The answer: focusing on effectively translating the science. I offered ISAPP my leadership of a new committee to take on this task. ISAPP formed the Science Translation Committee nearly 3 years ago with a goal of taking complex scientific topics and making them easy to understand for consumers and health professionals. The result of this effort has been the development of numerous infographics, blog posts, and informational videos that translate years of research into easily digestible nuggets of information that people can use. The most recent infographic focused on dispelling some common myths about probiotics – because, who doesn’t like some myth busting!

Effective science communication is essential – essential because it can help people understand the complex and enable them to make choices that can benefit their overall health. ISAPP – which is grounded in science – will continue to be the voice of probiotic and prebiotic science and work to help people understand these fun and interesting topics. So, check out our website and our resources and start learning!