Posts

The Microbiome — Can it aid in the diagnosis and therapy of irritable bowel syndrome (IBS)?

By Eamonn M M Quigley, MD FRCP FACP MACG FRCPI MWGO

Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas

Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders and seems to be prevalent across the globe1. Although non-fatal, IBS impacts on quality of life, personal relationships and productivity and can impose a significant socioeconomic burden on the individual as well as on society at large. Despite considerable effort there is still no test to diagnose IBS and, in clinical practice, the diagnosis commonly rests on the presence of characteristic symptoms, such as those defined by the Rome criteria2, in an individual in which alternate diagnoses have been excluded or deemed unlikely. The concern of the IBS sufferer and his/her physician is that because IBS symptoms are relatively non-specific (abdominal pain, altered bowel habit and bloating) a diagnosis based on symptoms alone may miss “something serious”.

Several challenges confront those who attempt to design a diagnostic test or new therapy for IBS. First, IBS is not a homogeneous disorder; symptoms, their severity and impact vary considerably. Second, symptoms tend to fluctuate over time with periods of calm interposed between episodes of much distress. Third, it is almost certain that IBS is multifactorial with various factors contributing to a variable extent in each sufferer. Over the years, genetic predisposition, gut motility and sensation, how the brain senses activity in the gut, and how the body responds to stress have all been invoked to explain the development of symptoms in IBS. While all of these factors undoubtedly contribute, none has yielded a diagnostic test.

One concept, that of the gut-brain axis, has served as a useful paradigm to explain IBS symptoms with dysfunction at various points along the axis, which extends all the way from the cerebral cortex to gut muscle, nerve and mucosa and back again, variably contributing to the presentation of IBS in different individuals3,4. Now, connections between the gut and the brain have been extended to include a new participant, the microbiome. This leads to the concept of the microbiome-gut-brain axis, whereby bacteria resident in the gut could impact on the “big brain” and even contribute to neurological and neuropsychiatric disease5. There is substantial experimental data to indicate that gut microbes influence components of the gut barrier, the intestinal immune system and the neuromuscular apparatus of the gastrointestinal tract, as well as central nervous system structure and function6.

Could the gut microbiome produce a diagnostic test for IBS?

That microbiota might be a factor in IBS was first suggested by the observation that IBS could develop de novo in the aftermath of acute enteric bacterial, viral or parasitic infections7. More recently, modern sequencing technology has been applied to fecal and colonic microbiota in IBS with the aim of determining relationships between a variety of clinical and demographic parameters and microbiota. Although data remain limited, and not always consistent, it is evident that IBS patients have an altered fecal microbiota relative to healthy individuals8. Currently available data are fraught with challenges in interpretation – small study populations, variations in patient selection and methodology, not to mention a failure to account for such confounders as diet, stool form and consistency, therapy, co-morbid psychopathology and symptom severity. Nonetheless, some overall patterns have emerged: the fecal and colonic mucosal microbiota are different in IBS and the fecal microbiota may not only predict severity9, but also responsiveness to one common intervention – the low fermentable oligo-, di- and monosaccharides and polyols (FODMAP) diet10. It is now abundantly clear that the expectation that a single microbial signature might typify IBS was naïve.

Recent progress

While we are not yet able to diagnose IBS using the microbiome, some very interesting observations have resulted from applying the highest quality microbiome science to what was once regarded as fringe and unimportant.

  1. Lessons from multi-omics

In the first of these studies, Kashyap’s lab, and its collaborators, employed a multi-omics approach in a longitudinal study of a reasonably large cohort of IBS sufferers and were able to identify IBS subtype-specific and symptom-related variations in microbial composition and function and to relate certain bacterial metabolites with physiological mechanisms relevant to IBS in the host11. A disturbed microbiome or an aberrant host response to the microbiome might well involve the generation of intraluminal molecules with biological effects on motility, sensation, gut barrier function, immune activation and, of course, communication with the central nervous system. A very high level of methodological complexity was needed to identify these relationships since IBS symptoms vary not only between individuals but over time within individuals.

  1. Food-related symptoms – linking bacteria, food antigens and the immune response

IBS sufferers have been telling us for decades that having a meal often makes their symptoms worse. Various explanations have been advanced to explain this phenomenon ranging from an exaggerated gastro-colonic reflex to food allergy and intolerance. A recent paper from Aguilera-Lizarraga and colleagues reveals just how complicated this story might well be – involving an interaction between bacterial infection, dietary antigens and immunoglobulin (Ig)E and mast cell responses in the host. In a mouse model, infection with Citrobacter rodentium led to a breakdown in oral tolerance to the food antigen ovalbumin which resulted in the development of an IgE antibody-mediated response locally in the colon and ultimately to diarrhea and visceral hypersensitivity, a common feature of IBS12. They went on to show that the injection of some common food antigens (soy, wheat, gluten and milk) into the rectosigmoid mucosa of IBS sufferers resulted in edema and mast cell activation. It was notable that the development of visceral hypersensitivity in the mouse model did not appear to be related to any change in the resident microbiome or to ongoing chronic inflammation but seemed to be a very specific interaction between the original infectious insult, loss of oral tolerance and the subsequent development of IgE antibodies to a dietary antigen. The net result was the activation of neural pathways responsible for visceral hypersensitivity.  These findings certainly extend our understanding of post-infection IBS, but to what extent they relate to IBS, in general, remains to be determined.

  1. Beyond bacteria

To date the focus on studies of the microbiome in IBS (or, for that matter, in most disease entities) has been on bacteria. Das and colleagues expanded their microbiota inquiry to consider the contributions of fungi (the mycobiome) to IBS13. They found significant differences in mycobiome diversity between IBS sufferers and control subjects but the mycobiome could not differentiate between IBS subtypes. Interestingly, mycobiome alterations co-varied with those in the bacteriome but not with dietary habits. Unfortunately, as has been the case with studies of bacterial populations, these changes in the mycobiome proved “insufficient for clinical diagnosis”.

  1. Fecal microbiota transplantation and IBS

Based on the assumption that gut microbial communities are disturbed in IBS and considering the success and overall excellent safety record of fecal microbiota transplantation/transfer (FMT) in the management of severe or recurrent Clostridioides difficile infection, it should come as no surprise that FMT has been employed in IBS14-24. Results to date have been mixed and, for now, preclude a recommendation that FMT be adopted to treat IBS. Two observations are of note. Both are derived from a randomized double-blind, placebo-controlled, clinical trials where the instillation of the patient’s own feces served as the control. First, the positive clinical results in the studies by El-Salhy and his colleagues seem to relate to the use of a “super-donor”20. Second, the report from Holvoet and colleagues suggests that the baseline microbiome of the recipient predicted response to FMT albeit in a very unique group of IBS sufferers21.  Indeed, it appears that a successful FMT, in IBS, is associated with the normalization of a number of components of the colonic luminal milieu22-24. Herein may lie clues to guide the future use of “bacteriotherapy” in IBS.

Conclusions 

It should come as no surprise, given advances in techniques to study the microbiota coupled with exciting data from animal models, that the paradigm of the microbiota-gut-brain axis has been proposed as relevant to IBS. The possibility that a disturbed microbiome, or an aberrant host-response to that same microbiome, might be relevant to IBS and could impact on the CNS is now being contemplated seriously as an avenue to understand disease progression and treatment as well as to open new diagnostic and therapeutic possibilities on this challenging disorder. As much of the extant data comes from animal models one must remain cautious in their interpretation – no single animal model can recapitulate the IBS phenotype. The bi-directionality of microbiota-gut-brain interactions must also be remembered – the complex interactions between inflammation and the gut microbiota exemplify how a disease state can impact on the microbiota.  With regard to interventions, there are many intriguing approaches, but still a long way to go to achieve personalized pharmabiotic therapy for that very special individual – the IBS sufferer.

References

  1. Sperber AD, Bangdiwala SI, Drossman DA, et al. Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology 2020 [epub ahead of print].
  2. Lacy BE, Mearin F, Change L, et al. Bowel Disorders. Gastroenterology 2016;150:1393-1407.
  3. Camilleri M, Di Lorenzo C. Brain-gut axis: from basic understanding to treatment of IBS and related disorders. J Pediatr Gastroenterol Nutr. 2012;54:446-53.
  4. Camilleri M. Physiological underpinnings of irritable bowel syndrome: neurohormonal mechanisms. J Physiol. 2014;592:2967-80.
  5. Quigley EMM. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr Neurol Neurosci Rep 2017;17:94.
  6. Mayer EA, Tillisch K, Gupta A. Gut-brain axis and the microbiota. J Clin Invest. 2015;125:926-38.
  7. Klem F, Wadhwa A, Prokop LJ, et al. Prevalence, Risk Factors, and Outcomes of Irritable Bowel Syndrome After Infectious Enteritis: A Systematic Review and Meta-analysis. Gastroenterology. 2017;152:1042-1054.
  8. Pittayanon R, Lau JT, Yuan Y, et al. Gut Microbiota in Patients WithIrritable Bowel Syndrome-A Systematic Review. 2019;157:97-108.
  9. Tap J, Derrien M, Törnblom H, et al. Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome. Gastroenterology. 2017;152:111-123.
  10. Bennet SMP, Böhn L, Störsrud S, et al. Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut 2018;67:872-81.
  11. Mars RAT, Yang Y, Ward T, et al. Longitudinal Multi-omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome. 2020;183:1137-1140.
  12. Aguilera-Lizarraga J, FlorensMV, Viola MF, et al. Local immune response to food antigens drives meal-induced abdominal pain. Nature 2021;590:151-156.
  13. Das A, O’Herlihy E, Shanahan F, et al. The fecal mycobiome in patients with Irritable Bowel Syndrome. Sci Rep 2021;11:124.
  14. Myneedu K, Deoker A, Schmulson MJ, Bashashati M. Fecal microbiota transplantation in irritable bowel syndrome: A systematic review and meta-analysis. United European Gastroenterol J. 2019;7:1033-1041.
  15. Halkjær SI, Christensen AH, Lo BZS, et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. 2018;67:2107-2115.
  16. Johnsen PH, Hilpüsch F, Cavanagh JP, et al.Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol Hepatol. 2018;3:17-24.
  17. Aroniadis OC, Brandt LJ, Oneto C, et al. Faecalmicrobiota transplantation for diarrhoea-predominant irritable bowel syndrome: a double-blind, randomised, placebo-controlled trial. Lancet Gastroenterol Hepatol. 2019;4:675-685.
  18. Johnsen PH, Hilpüsch F, Valle PC, Goll R. The effect of fecal microbiota transplantation on IBS related quality of life and fatigue in moderate to severe non-constipated irritable bowel: Secondary endpoints of a double blind, randomized, placebo-controlled trial. 2020;51:102562.
  19. Lahtinen P, Jalanka J, Hartikainen A, et al. Randomised clinical trial: faecalmicrobiota transplantation versus autologous placebo administered via colonoscopy in irritable bowel  Aliment Pharmacol Ther. 2020;51:1321-1331.
  20. El-Salhy M, Hatlebakk JG, Gilja OH, et al. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut. 2020;69:859-867.
  21. Holvoet T, Joossens M, Vázquez-Castellanos JF, et al. FecalMicrobiota Transplantation Reduces Symptoms in Some Patients With Irritable Bowel Syndrome With Predominant Abdominal Bloating: Short- and Long-term Results From a Placebo-Controlled Randomized Trial. 2021;160:145-157.
  22. Mazzawi T, Hausken T, Hov JR, et al. Clinical response tofecal microbiota transplantation in patients with diarrhea-predominant irritable bowel syndrome is associated with normalization of fecal microbiota composition and short-chain fatty acid levels. Scand J Gastroenterol. 2019;54:690-699.
  23. Goll R, Johnsen PH, Hjerde E, et al. Effects offecal microbiota transplantation in subjects with irritable bowel syndrome are mirrored by changes in gut microbiome. Gut Microbes. 2020;12:1794263.
  24. El-Salhy M, Valeur J, Hausken T, Gunnar Hatlebakk J. Changes infecal short-chain fatty acids following fecal microbiota transplantation in patients with irritable bowel  Neurogastroenterol Motil. 2020:e13983.

 

ISAPP’s 2019 annual meeting in Antwerp, Belgium: Directions in probiotic & prebiotic innovation

Kristina Campbell, Microbiome science writer, Victoria, British Columbia

We live in a time when a simple Google search for ‘probiotics’ produces over 56.8 million hits; a time when almost everyone has heard of probiotics through one channel or another, and when an ever-increasing variety of probiotic and prebiotic products is available in different regions of the world.

The next five to ten years will be telling: will probiotics and prebiotics join the ranks of other trendy health products that experienced a wave of popularity before something else took their place? Or will they be recognized as important contributors to health through the lifespan, and establish a permanent position in the clinical armamentarium?

According to the global group of 175 academic and industry scientists who met for the ISAPP annual meeting in Antwerp (Belgium) May 14-16, 2019, one thing above all is necessary for the world to recognize the significance of probiotics and prebiotics for health: scientific innovation. Not only are technological capabilities advancing quickly, but also, new products are being evaluated by better-educated consumers who demand more transparency about the health benefits of their probiotics and prebiotics.

Participants in the ISAPP conference came together to talk about some of the leading innovations in the world of probiotics and prebiotics. Here are three of the broad themes that emerged:

Better health through the gut-brain axis

Gut-brain axis research is rapidly growing, with many investigators in search of probiotic and prebiotic substances capable of modulating brain function in meaningful ways. Phil Burnett of Oxford (UK) presented on “Prebiotics, brain function and stress: To what extent will prebiotics replace or complement drug therapy for mental health?”. Burnett approached the challenge by administering prebiotics to healthy adults and giving them a battery of psychological tests; in one experiment he found people who consumed a prebiotic (versus placebo) showed benefits that included reduced salivary cortisol and positively altered emotional bias. For those with diagnosed brain disorders, Burnett concludes from the available data that prebiotics have potential anxiolytic and pro-cognitive effects in these populations, and that prebiotics may eventually be used to complement the established treatments for some mental disorders.

Short-chain fatty acids (SCFAs) are of interest as potential modulators of brain function, but so far very little research has been carried out in this area. Kristin Verbeke of Leuven (Belgium) gave a talk entitled “Short-chain fatty acids as mediators of human health”, which covered the extent to which interventions with fermentable carbohydrates can alter systemic SCFA concentrations (rather than gut SCFA concentrations)—since the former are more relevant to effects on the brain.

Also, a students and fellows feature talk by Caitlin Cowan of Cork (Ireland) explored a role for the microbiota in psychological effects of early stress. She spoke on the topic “A probiotic formulation reverses the effects of maternal separation on neural circuits underpinning fear expression and extinction in infant rats”.

A clear definition of synbiotics

Immediately before the main ISAPP meeting, a group of experts met to propose a consensus definition of ‘synbiotic’, with the objective of clarifying for stakeholders a scientifically valid approach for the use of the increasingly-popular term. A key point of discussion was whether the probiotic and prebiotic substances that make up a synbiotic are complementary or synergistic. And if the two substances have already been tested separately, must they be tested in combination to give evidence of their health effect? The group’s conclusions, which will undoubtedly steer the direction of future R&D programs, will be published in a forthcoming article in Nature Reviews Gastroenterology & Hepatology.

Probiotics and prebiotics for pediatric populations

Probiotics and prebiotics have been studied for their health benefits in pediatric populations for many years, but in this area scientists appear to have a renewed interest in exploring new solutions. Maria Carmen Collado of Valencia (Spain) covered “Probiotic use at conception and during gestation”, explaining some of the most promising directions for improving infant health through maternal consumption of probiotics.

In recent years, technical advancements have made possible the large-scale production of some human milk oligosaccharides (HMOs); it is now an option to administer them to infants. Evelyn Jantscher-Krenn of Graz (Austria) presented a novel perspective on HMOs, with “HMOs in pregnancy: Roles for maternal and infant health”, giving a broad overview of the many ways in which HMOs might signal health status and how they might be fine-tuned throughout a woman’s pregnancy.

A discussion group on “prebiotic applications in children”, chaired by Dr. Michael Cabana of San Francisco (USA) and Gigi Veereman of Brussels (Belgium), discussed evidence-based uses of prebiotics in children in three areas: (1) prevention of chronic disease; (2) treatment of disease; and (3) growth and development. While the latter category has the best support at present (specifically for bone development, calcium absorption, and stool softening), the other two areas may be ripe for more research and innovation. The chairs are preparing a review that covers the outcomes of this discussion group.

Next year in Banff

ISAPP’s next annual meeting is open to scientists from its member companies and will be held on June 2-4, 2020 in Banff, Canada.

 

Photo by http://benvandenbroecke.be/ Copyright, ISAPP 2019.

brain-gut relationship illustration

Bugs on the Brain: the Microbiota-Gut-Brain Axis

September 2017. By Eamonn M. M. Quigley, Chief Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Professor of Medicine, Weill Cornell Medical College, Houston, Texas, USA.

We can all remember those instances of diarrhea (or at least frequent bowel movements) and “butterflies” that we suffered before a critical test, interview or presentation. These are examples of stress originating from the brain influencing gut function. Extensive research over the past several decades has revealed that this is a two-way street – the gut constantly signals to the brain, too. This bidirectional channel of communication between the “big brain” in the cranium and the “little brain” (i.e. the enteric nervous system) in the gut came to be referred to as the gut-brain axis. This link relies on neurons of the sympathetic and parasympathetic nervous systems, as well as circulating hormones and other neuromodulatory molecules.

We now understand that mental symptoms of stress, anxiety or depression have a clinical impact on the gut. These include situations where the brain, the gut and their channel of communication, the autonomic nervous system, are affected by the same pathologic process. Parkinson’s disease is a prime example. Indeed, a hypothesis has evolved to suggest that Parkinson’s disease actually originates in the gut and ascends to the brain. Other scenarios include those instances where neurologic symptoms are a consequence of a primarily gastrointestinal pathology. This occurs in malabsorption syndromes when nutrients such as folic acid and B12, which are critical to brain function, become deficient. Finally, and most commonly, are those situations such as irritable bowel syndrome (IBS) where it is widely believed that symptoms result from dysfunction or disturbance somewhere along the gut-brain axis. In some individuals the problem may lie primarily in the gut; in others the main issues may be a distorted representation of gut stimuli in the brain.

Recently the concept of the gut-brain axis has been extended to include the microbiota (the microbiota-gut-brain axis) and tantalizing evidence suggests that bacteria resident in the gut could have an impact on the “big brain”. Indeed, some researchers have raced ahead to suggest that assessing alterations in the microbiome could assist in the diagnosis of a host of neurological disorders and that therapies targeted at the microbiome could play a central role in disorders as diverse as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, autism, stroke, depression and drug addiction.

We should remember that the microbiota-gut-brain axis is far from a novel concept as it was clearly described over 60 years ago with research on hepatic coma. Metabolic products of gut bacteria lead to this much feared complication of advanced liver disease and an intervention targeted at the microbiome, namely, the administration of antibiotics, was shown to be dramatically effective. In these pioneering studies the role of bacterial overgrowth in the small bowel by coliforms and other bacteria, which are normally confined to the colon, was found to be important. Subsequently, these same bacteria and the inflammatory response that they evoke have been incriminated in the pathophysiology of another common consequence of chronic liver disease, portal hypertension, as well as in other complications such as spontaneous bacterial peritonitis, systemic sepsis and hemostatic failure. Indeed, there are several manifestations of this tripartite resonance between microbiota, the liver and the central nervous system. Gut health factors such as small bowel bacterial overgrowth, an abnormal microbiota, impaired gut barrier function, a pro-inflammatory state and the appearance in the systemic circulation of neuro-active molecules generated by bacterial metabolism are all postulated to play important roles in the actual pathogenesis of a number of common liver diseases. So what is new?

From the basic science laboratories and a variety of animal models a pretty coherent message has emerged. Firstly, the microbiome can influence brain development, structure and function and lead to changes in cognition and behavior. Secondly, the manipulation of the microbiome – for example, with probiotics – can ameliorate certain brain disorders and reverse impaired function. Thirdly, the inoculation of microbiota samples from individuals with a number of neuropsychiatric disorders into animal models can recapitulate features of the human disease. So far so good.

As always, extrapolation from animal studies to humans is fraught with difficulties: differences between animal and human brains and microbiota, the limitations of animal models of psychiatric and functional bowel disorders, and, above all, the challenges of studying brain function in humans. The good news is that these challenges are being addressed. Researchers are utilizing various technologies that provide dynamic images of brain function in various parts of the brain in response to a variety of situations, stimuli and exposures. These are now beginning to provide evidence that our microbiota can influence brain function and that the gut microbiota might, indeed, be a therapeutic target for patients with disorders such as depression, Parkinson’s disease and autism. Data are preliminary and certainly not at a stage where we can offer diagnostic testing based on a fecal sample or recommend antibiotics, prebiotics, probiotics or fecal microbiota transplantation for a given neuropsychiatric disease or disorder. But watch this space!