Posts

Decoding a Probiotic Product Label

By Mary Ellen Sanders, PhD

Interested in knowing what’s in your probiotic product? Unfortunately, there are many ways that probiotic product labels can fall short.

First, not all items labeled as “probiotic” truly meet the scientific criteria for a probiotic product. See here for information on what qualifies as a probiotic. Some fermented foods are marketed today claiming to be ‘probiotic’. But these products often have undefined microbial content and lack any studies documenting health effects, criteria that are required for a probiotic. Instead, such products could legitimately be labeled as containing ‘live, active cultures’. Dietary supplement products formulated with untested microbes should similarly not be labeled as probiotics.

Also, a label might not provide adequate information on what types of microbes are contained in the product. Genus and species may be listed, but no strain designation. Maybe only “bifidobacteria” or “lactobacilli” are listed.

They might not disclose the potency of individual strains in the product. Some may provide a total count of colony forming units (cfu)/dose or serving, which in the case of a single strain product is informative. But in the case of a multi-strain product – products may contain a couple or up to 30 strains – you don’t know if equal amounts of all strains are included, or perhaps the bulk of the count is made up of the strain in the formulation that is least expensive to manufacture rather than the one that will make the probiotic more effective. Some products may provide one count for “Lactobacillus” and another count for “Bifidobacterium”, a slightly more informative approach than just total count, but still lacking in detail. Many challenges exist for multi-strain products, including the lack of robust methods to quantify different strains once combined, especially viable ones. This topic was one that was covered in an ISAPP webinar, Current issues in probiotic quality: An update for industry.

The label may state that the count is “at time of manufacture”, a number that is no doubt inadequate if you purchase the product close to the end of its shelf-life. Most probiotic strains suffer cell count decline over the course of shelf-life, with some strains more susceptible than others. This situation almost guarantees that by the pull-by date for a multi-strain product, the ratio of cfu of strains to each other is likely much different than at the time of formulation.

Surveys of probiotic product labels

Additionally, it is difficult for consumers to know what products are backed by studies documenting a health benefit. If a product is not labeled sufficiently, it is impossible to link it to evidence. Two studies surveyed commercial probiotic products in the Washington DC area, Retail Refrigerated Probiotic Foods and Their Association with Evidence of Health Benefits and More Information Needed on Probiotic Supplement Product Labels. Results showed that 45% of retail dietary supplement products did not provide strain designations and an equal number did not provide a measure of potency through the end of shelf-life. Only 35% of products could be linked (based on strain and dose) to evidence of a health benefit. Food products fared a bit better, with 49% of refrigerated probiotic food products being linked to evidence of a health benefit. One clear indication from this study was that if your food product discloses the strain designation, it is likely to have evidence of a health benefit. An overall conclusion was that product labeling – at least in this region – needs improvement.

Historical context on guidelines for probiotic product labels

According to the FAO/WHO 2002 Working Group on Guidelines for the Evaluation of Probiotics in Food (page 39 of this combined document), the following information should be on probiotic labels:

– Genus, species and strain designation for each probiotic strain in the product.

– Minimum viable numbers of each probiotic strain at the end of the shelf-life, typically expressed in colony forming units (or cfu).

– The suggested serving size (or dose) must deliver the effective dose of probiotics related to any health benefit communicated on the label.

– Health claim(s) (as allowed by law and substantiated by studies)

– Proper storage conditions

– Corporate contact details for consumer information

These principles are developed and reiterated in “Best Practices Guidelines for Probiotics” (2017) developed by the Council for Responsible Nutrition and IPA.

Additional information

ISAPP created an infographic to explain the information on a probiotic labels. Our example portrays an imaginary dietary supplement for sale in the United States. Labels on foods containing a probiotic or a probiotic produced in another country would be labeled differently from this example to comply with applicable regulations. For those interested in probiotic labels in the EU, see the infographic ISAPP created for a probiotic product in the European Union. Also of interest, USP.org created an infographic on “How to Read a Dietary Supplement Label” for U.S. products.

Can dietary supplements be used safely and reliably in vulnerable populations?

By Dr. Greg Leyer, Sr. Director – Scientific Affairs, Chr. Hansen, Inc., Madison, WI and Prof. Dan Merenstein, Department of Family Medicine, Georgetown University Medical Center, Washington DC

What is it that doctors look for when recommending or prescribing therapies to patients? If it is a drug, a supplement, a new diet, or even a new exercise regimen, they look for safety and efficacy. There are of course other things to consider, including cost, ease of administration, and patient compliance, among others. But safety and efficacy are their foremost concerns.

A recently published clinical report from the American Academy of Pediatrics (AAP) (Poindexter 2021) examined the evidence for probiotics to prevent morbidity and mortality in preterm infants. They concluded that probiotics could not be recommended. This differs from conclusions of the American Gastroenterological Association (AGA) (Su et al. 2020), which recommended specific probiotic strains for preterm (less than 37 weeks gestational age) and low birth weight infants. The AAP report also differs from the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) (Van den Akker et al. 2020), which recommends specific strains for this use, although their recommendations are not fully aligned with AGA’s (see What’s a Clinician to do When the Probiotic Recommendations from Medical Organizations Do Not Agree?).

The AAP report does a thorough job of reviewing data on use of probiotics in the NICU, including conflicting studies, lack of confirmatory studies of efficacious strains, and safety and cross contamination inside the NICU. However, the overriding theme of the report is “clinicians must be aware of the lack of regulatory standards for commercially available probiotic preparations manufactured as dietary supplements and the potential for contamination with pathogenic species.” Therefore, at the heart of the AAP failure to recommend probiotics is the concern that the quality of available products is insufficient. Because of the absence of a pharmaceutical-grade probiotic product for use in the United States, they posit, they cannot recommend usage. It is noteworthy that the trials performed on premature infants resulting in multiple conclusions of safety and efficacy have thus far utilized probiotic products manufactured as dietary supplements.

Probiotics can be marketed as drugs if they follow that regulatory pathway, but generally in the US they are sold under the regulatory classification of dietary supplements. Is the AAP correct that no dietary supplement is of sufficient quality to recommend for use in preterm infants?

Quality of probiotic dietary supplement probiotics. Dietary supplements were a category of product developed to supplement the diet of the generally healthy population, not to treat or prevent disease. In practice this is an important distinction, because while the safety standard is high for dietary supplements for healthy individuals (see comments by food safety expert Jim Heimbach here), such supplements do not need to be established as safe for patient populations. But in the case of probiotics, many clinical trials have evaluated safety and efficacy for prevention or treatment of disease, more aligned with drug uses. Yet probiotic products supported by these data are not marketed in the US as drugs.

It is a common misperception that dietary supplements are “not regulated”. However, the FDA has clear good manufacturing practices (GMP’s) and regulations dedicated to dietary supplement manufacturing.  The onus is on manufacturers to establish appropriate product specifications based on intended use and risk. Reputable manufactures establish rigorous purity, strength, and identity quality standards consistent with the intended population and sufficient for that use. Products intended for infants, including premature infants, should be manufactured under quality standards more rigorous than those intended for a healthy adult population. For example, Chr. Hansen bases the enhanced specifications for products aimed at infants, and preterm infants, on elements of Codex standards for infant formula, amongst other stringent microbiological criteria. This would include manufacturing the probiotic strain to an “infant” grade, employing stricter environmental monitoring, sanitation, and airflow control throughout the process, careful selection of raw ingredients for infant compatibility, and enhanced testing and purity standards using validated methods at every step. The internal manufacturing standards that Chr. Hansen applies for products intended for infants, and preterm infants, are much stricter than typical dietary supplement standards, and are appropriate for their intended use.

Therefore, there are high quality, safe probiotic products produced under dietary supplement regulations even though such products do not carry any label statement claiming this added level of quality. However, products sourced for hospitals to stock in formularies could work with the supplier to demand this extra level of product testing specifications. Pharmacies can institute quality agreements with vendors that would delineate their expectations for the strains present, the levels of live microbes acceptable in the final product, etc. This agreement could also mandate that any product change – as defined in the agreement – would require the vendor to notify the customer. Such an agreement might be burdensome for a hospital pharmacist, but a sophisticated dietary supplement company should be able to assure the hospital formulary of their quality.

Products made using strict specifications, geared towards infant and premature infant applications, are on the market and are safely being used in this patient population in many NICUs and as part of infant formulas. We disagree with AAP’s position that a pharmaceutical approach is needed, as long as a product of sufficient quality can be provided. To deny preterm infants probiotics, which have a significant chance of improving their clinical outcomes, is not in line with other medical recommendations. Instead, the hospital formularies should stock products that have been scrutinized for sufficient evidence of safety and efficacy. Suppliers of stocked products should provide product testing results, a description of the quality standards employed during production, and a rationale for the suitability of the standards for preterm infants. Third party verification of adherence to these quality standards would assure medical professionals regarding the safety of these products for use.

References

CAC/RCP 66-2008. Code of hygienic practice for powdered formulae for infants and young children. Codex.

Poindexter, B. 2021. Use of Probiotics in Preterm Infants. Pediatrics 147 (6): e202 1051485.

Su et al. 2020. AGA Clinical Practice Guidelines on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology 159:697-705.

Van den Akker et al.  2020. Probiotics and Preterm Infants: A Position Paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics. Journal of Pediatric Gastroenterology and Nutrition. 70(5):664-680.

 

 

Forthcoming changes in Lactobacillus taxonomy

Mary Ellen Sanders PhD, Executive Science Officer, ISAPP

I was privileged to be included in a small meeting of scientists, both academic and industry, who met last week in Verona to discuss changes in Lactobacillus taxonomy. The first objectives of the meeting were to clarify with industry the need for the proposed changes and to clarify the methodology that will be used. The second objectives were to discuss at large potential consequences and approaches to address them.

Changes to the Lactobacillus genus

Experts from the Taxonomic Subcommittee for Lactobacilli, Bifidobacteria and Related Organisms agreed that the genus Lactobacillus is too heterogeneous and dividing this genus into several genera is inevitable. The need for this taxonomic ‘correction’ has been known for a long time, but until recently, the methodologies needed to reliably group the current Lactobacillus species into new genera were not available. But earlier this year, a paper by Salvetti et al (2018) analyzed 269 Lactobacillus and related (e.g., Pediococcus, Leuconostoc, Fructobacillus, Oenococcus) species and showed that the Lactobacillus genus comprises 10 phylogroups (see box). Each of these phylogroups represents at least one new genus. These same 10 phylogroups were observed using three separate approaches [phylogenetic analysis of 16S ribosomal DNA sequences, whole genome sequence analysis, leading to the comparison of 72 shared housekeeping genes (the core genome), and the comparison of average amino acid identity and percentage of conserved proteins], providing strong evidence that these groupings are robust. Commercially important Lactobacillus probiotic strains span at least 7 of those newly defined phylogroups; food fermentation lactobacilli cover even more.

lactobacillus_info

Although these 10 phylogroups were identified by this study, the current genus Lactobacillus could ultimately be resolved into 10 or up to 23 genera, depending on the cut-off values used for the different approaches. If researchers choose to split the genus into fewer new genera, it increases the chance that taxonomic changes will be needed in the nearer future. If they split the genus into more genera, it increases the chance that nomenclature will remain stable.

The names of the new genera are not decided. New names must be published (or validated) in the International Journal of Systematic and Evolutionary Microbiology. The authors of the publication will propose the new genus names. All species will be retained and their species names will not change. To minimize disruption, researchers will try to propose new genera names that begin with the letter “L”. Because “Lactobacillus” is a masculine Latin noun, the new genus names must be masculine for the species names to be retained.

A silver lining

Critics of these changes may suppose that adhering to taxonomic convention is their only purpose. But a classification system that better reflects genetic relatedness of the species may reap other benefits. As evidence for clinical benefits accumulates (summarized in open access review “Probiotics for Human Use”, 2018) and investigations provide insight into probiotic mechanisms of action, a clearer image of mechanisms and functions associated with particular taxonomic groups may emerge. The concept of core, shared benefits that were not strain-specific but linked to higher taxonomic groupings was explored in two ISAPP publications [Hill et al. (2014) and more in depth in Sanders et al. (2018)]. Reconsideration of clinical evidence and its relationship to new genera might prove enlightening.

What can be done to minimize confusion?

The meeting attendees brainstormed potential complications that might result from changing genus names. Company representatives in general considered that internal changes could be managed, although resources would be required to update names on all different paperwork and labels associated with commercial products (for example, marketing materials, product information, certificates of analysis, labeling, import/export certificates). The 2002 WHO/FAO probiotic guidelines, as well as the 2017 CRN/IPA guidelines, indicate that the genus, species and strain designation should be included on product labels. Further, the name used should reflect current nomenclature. This requirement is reflected in some national regulations. Therefore, genus name changes will necessitate label changes.

Further, it was emphasized that a clear document should be prepared and endorsed by reputable organizations (EFSA, NIH, FDA, medical organizations, and others). The document should: (a) indicate the name changes, (b) provide a clear, concise statement of why the changes were needed, and (c) emphasize that only the names, not the strains, would be different. This could be leveraged by companies to communicate with all stakeholders. End-users of probiotic products would likely not be a significant communication challenge. Authorities involved with probiotic safety (FDA with GRAS and EFSA with QPS) likely will manage these changes, as they are science-based. More of a concern was communication with other regulators, both at the level of national agencies responsible for probiotic-specific regulations (including countries with positive lists of species that are acceptable as probiotics) as well as authorities involved in import/export of product. Some potential issue with intellectual property may be envisaged, especially in a transition period during which the new names are not routinely used yet.

The bottom line: Name will change but the strains will stay the same 

The current Lactobacillus genus will be split into at least 10, and perhaps as many as 23, genera. No species names will change, but many species – including commercially important ones – will have a different genus names, hopefully beginning with the letter “L”.  Because of the tremendous heterogeneity of the current Lactobacillus genus, Prof. Paul O’Toole concluded his presentation saying “the status quo is not an option.” Some disruptions can be expected from this massive change, but the probiotic field would benefit from embracing these changes and developing strategies to minimize any difficulties resulting from them.

 

Additional information:

The International Committee on Systematics of Prokaryotes (ICSP) and the International Code of Nomenclature of Bacteria are responsible for the naming of bacteria. The subcommittee of the ICSP responsible for naming lactobacilli is the Taxonomic Subcommittee for Lactobacilli, Bifidobacteria and Related Organisms.

The meeting was convened by the Lactic Acid Bacteria Industrial Platform and chaired by Esben Laulund of Chr Hansens, who also chairs IPA Europe. A full report of meeting conclusions is expected to be published in a scientific journal by the end of 2018. Abstracts and program will to be posted on the LABIP website in due time.

The taxonomic hierarchy for Lactobacillus currently is: Domain: Bacteria; Division/Phylum: Firmicutes; Class: Bacilli; Order Lactobacillales; Family: Lactobacillaceae; Genus: Lactobacillus. The lowest order of taxonomy is the subspecies; the strain designation has no official standing in nomenclature. There are currently over 230 recognized species of Lactobacillus, and approximately 10 new species are added each year.

clinician_guides

Guides for use of probiotics in the clinic – some recent ISAPP initiatives

By Mary Ellen Sanders, PhD

At the ISAPP meeting earlier this month, Prof. Dan Merenstein, MD, presented a summary of recent ISAPP initiatives focused on helping translate the evidence of probiotics and prebiotics into clinical action.

A 2013 paper reported that 87% of hospital formularies surveyed in the United States carried at least one probiotic. Yet when Merenstein looked at the names of the products tested, many were not supported by evidence for such uses. This highlights the need for clinicians to have access to clear, evidence-based probiotic use guidelines.

ISAPP has worked through a variety of avenues to get information into the hands of clinicians. It has supported continuing education credit activities, webinars, collaboration with clinical organizations to develop guidelines, publications in clinical journals, presentations at clinical meetings, and simplified summaries using infographics and videos. Some examples include the following.

 

World Gastroenterology Organisation Global Guidelines – Probiotics and Prebiotics

This document is the most visited and downloaded of all WGO guidelines. In 2017, under the leadership of Prof. Francisco Guarner, MD PhD, this document was updated. Three current ISAPP board members were part of the process and ISAPP provided funding. See here.

 

Petitions

ISAPP petitioned the United States Preventive Services Task Force to examine the role of probiotics in preventing antibiotic-associated diarrhea. They considered the petition, but didn’t feel it fit their mission.

ISAPP petitioned American Academy of Family Physicians to consider reviewing the evidence for probiotics for AAD to include in their evidence-based guidelines. This is under consideration.

After attending 2017 ISAPP, Dr. Claire Merrifield BSc MBBS PhD led an effort to have NICE Clinical Knowledge Summaries mention probiotics for AAD in an effort to get local groups to adopt guidelines. This has met with limited success. See here.

 

CME or CE activities

On April 17, 2018, Merenstein and Mary Ellen Sanders PhD served as faculty for a CME-eligible webinar sponsored by Medscape on “Navigating the World of Probiotics. Helping Patients Make Good Choices”. The activity is available on Medscape’s website here.

In February 2018, Merenstein published a CE activity with the Pharmacy Times titled “The Expanding Health Benefits of Prebiotics and Probiotics”. See here

Upcoming in October 2018, Merenstein will present “Probiotics and the GI Tract. What Should a Busy Clinician Know” at the American Academy of Family Physicians Annual Conference. This conference is attended by over 4,000 physicians and is focused on clinical practice. The event, eligible for CME, will be recorded and made available after the live presentation.

ISAPP co-founder, Prof. Glenn Gibson has or will present 6 lectures over 2017 and 2018 on the topic of “The Learning Curve for Probiotics and Prebiotics.” These lectures are available for CME credit and are targeted to family doctors, gastroenterologists, pediatricians, and dieticians in the UK.

Numerous CME presentations over 2017-2018 have been given by ISAPP board members:

M.D. Cabana:

  • “Probiotics: Friend or Folly?”  American Academy of Pediatrics National Conference and Exhibition. Chicago, IL. September 17, 2017.  The audience was about 450-500 clinicians.
  • “Probiotics in Primary Care Pediatrics: Diarrhea, Colic & Eczema.” American Academy of Pediatrics California Chapter 1 Meeting. 300 clinicians
  • “Probiotics for Colic?” Zuckerberg San Francisco General Hospital. Department of Pediatrics Grand Rounds. San Francisco, CA.
  • “Probiotic Interventions for Colic” UCSF Benioff Children’s Hospital, Oakland.
  1. Reid:
  • “Effects and importance of microbiota on urogenital health in women.” 16th Annual Congress of Gynecology and Obstetrics, Antalya, Turkey. 300 obstetricians and gynecologists.
  • “Probiotics to whom for what?” Health World Ltd International Congress Natural Medicine 2017, Hunter Valley, New South Wales, Australia,.601 healthcare practitioners and naturopaths.
  • “The microbiome and how it relates to maternal/newborn care.” The Graham Chance Lectureship, Perinatal Research Day, London, ON. 100 neonatologists and pediatric experts.
  • “Microbes and the brain.” Integrative Healthcare Symposium, New York City. 500 naturopaths and various specialists.
  • “Probiotics and detoxification.” Environmental Health Symposium, Scottsdale, Arizona, 8th April. 500 naturopaths and various specialists.

 

Webinars

On June 28, ISAPP co-founder, Prof. Glenn Gibson, will present a webinar along with Profs. Ted Dinan and Ian Rowland titled “Why is everybody talking about gut microbiota?” Sponsored by the British Nutrition Foundation, this webinar will target healthcare professionals in the UK and Europe. See here.

 

Publications in clinical journals

Several ISAPP board members

  • Evidence-Based Probiotic Use in Family Medicine. Submitted, Journal of Family Practice. Merenstein/Sanders/Tancredi
  • Probiotics for Human Use. In press, Nutrition Bulletin. Sanders/Merenstein/Hutkins/Merrifield
  • Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Invited review in preparation, Nature Reviews Gastroenterology and Hepatology. Gibson/Reid/Sanders/Merenstein
  • Clinical perspectives of prebiotics and synbiotics. In preparation, Gastroenterology. Gibson/Quigley

 

Featured on ISAPPscience.org

Infographics

 

Videos

  • What is a probiotic?
  • Health benefits of probiotics
  • Are all probiotics the same?
  • How to choose a probiotic

 

General guidelines for choosing probiotics and prebiotics

Some initiatives that Merenstein championed were a direct result of ideas generated during the discussion group he led during the 2017 ISAPP meeting in Chicago.

 

Image courtesy of nursingschoolsnearme.com/