Posts

60 Minutes’ 13 minutes on probiotics

By Mary Ellen Sanders, PhD, ISAPP Executive Science Officer 

On June 28, 60 Minutes aired a 13-minute segment about probiotics titled, “Do Probiotics Actually Do Anything?” Unfortunately the media segment did not provide listeners with a nuanced perspective.

‘Probiotics’ were treated as if they were one entity, ignoring the best approach to addressing the topic of what probiotics do: evaluate the evidence for specific strains, doses and endpoints, and then make a conclusion based on the totality of the evidence. They would have found that many experts agree that actionable evidence exists for certain probiotics to prevent antibiotic associated diarrhea (here, here), prevent upper respiratory tract infections (here), prevent morbidity and mortality associated with necrotizing enterocolitis (here,), treat colic (here), and treat acute pediatric gastroenteritis (here). (For an overall view of evidence, see here.)

Importantly, not all retail probiotics have evidence (at least evidence that is readily retrievable, see here and here). But that does not mean that none do.

The 60 Minutes segment also highlighted questions about probiotic safety. No intervention is without risk, and no one claims as much for probiotics. Prof. Dan Merenstein, MD, just one clinical investigator of probiotics, has collected over 20,000 pediatric clinical patient days’ worth of safety data over the past eight years of clinical investigation, with no indication of safety concerns. In fact, participants in the placebo group generally have more adverse events than in the probiotic groups. But importantly, the safety standard for probiotics was mischaracterized by 60 Minutes. According to Dr. James Heimbach, a food safety expert (not interviewed in the segment) who has conducted 41 GRAS determinations on probiotics, over 25 of them notified to the FDA, he objects to the statement that GRAS is a lower safety bar than a drug. He clarifies:

“The safety standard that applies to food additives and GRAS substances, “reasonable certainty of no harm,” is a far higher standard than that applying to drugs. Drugs are judged against a risk/benefit standard, which can potentially allow quite dangerous drugs on the market provided they offer a significant benefit. The safety standard for drugs also applies only to prescribed doses for specific individuals over prescribed durations. The food-additive/GRAS substance standard, on the other hand, requires safety at any biologically plausible level of intake, for any person (child, adult, elderly; pregnant; etc.), over a lifetime. And it is a risk-only standard—no potential benefit is allowed to override the “reasonable certainty of no harm” standard. Additionally, in the case of GRAS substances (which includes most probiotics), the evidence of safety must be published in the peer-reviewed scientific literature and be widely accepted by the scientific community as well as by government regulators.”

Finally, the story implied that benefits people claim for themselves when using probiotics are due to a placebo effect. This ignores the many properly controlled studies directly comparing the effects of specific probiotics to placebos. A positive trial on probiotics, such as observed in this recent trial on irritable bowel syndrome symptoms (here) and in most trials included in Cochrane meta-analyses on prevention of C. difficile-associated diarrhea (here), means that positive effects were observed beyond any placebo effect. The placebo effect is real, equally applicable to probiotics and drugs, but as with all clinically evaluated substances, properly controlled trials control for this effect.

The probiotic field has come a long way over the past 20 years with regard to number and quality of clinical trials. In that time, well-done systematic reviews of the evidence have found benefits for specific probiotics for specific conditions, while also finding a lack of evidence for beneficial effects in other contexts. There are of course well-conducted clinical trials that have failed to demonstrate benefit (here, here, here). This should not be equated to mean that probiotics do not do anything.

Many challenges remain for improving the quality of the evidence across the wide range of different strains, doses, endpoints and populations. More clinical research needs to be conducted in a manner that minimizes bias and is reported according to established standards. Confidence in the quality of commercial products could be improved by industry adopting third party verification (here), and the quality of products targeting compromised populations need to be fit for purpose (here). Companies should stop using the term ‘probiotic’ on products that have no evidence warranting that description. We need to understand much better how a person’s individual situation, such as diet, microbiome, use of medications and fitness, impact the ability of a probiotic to promote health. Much remains to be learned in this evolving and exciting field. As Dr. Merenstein says, “The key question is not, ‘Do probiotics actually do anything?’, as that is easily answered ‘yes’ when you look at robust placebo-controlled trials of specific probiotics. Better questions are ‘Which probiotics do anything, and for what?’”

Further reading:

Misleading press about probiotics: ISAPP responses

ISAPP take-home points from American Gastroenterological Association guidelines on probiotic use for gastrointestinal disorders

New publication gives a rundown on probiotics for primary care physicians

Safety and efficacy of probiotics: Perspectives on JAMA viewpoint

New publication gives a rundown on probiotics for primary care physicians

With an increasing number of patients becoming aware of the human microbiome and its role in health, primary care physicians are faced with questions about probiotics as a possible strategy for maintaining health. Patients may see conflicting messages in the news and on product labels – so how can they know which probiotic benefits are scientifically proven?

A new publication in the Journal of Family Practice provides a quick update on evidence for the use of probiotics in different indications, so primary care physicians can equip themselves to provide evidence-based recommendations and to answer patients’ most commonly asked questions about probiotics.

Written by ISAPP board members Daniel J. Merenstein, MD and Mary Ellen Sanders, PhD, along with Daniel J. Tancredi, PhD, the article provides practical advice in the form of practice recommendations, along with comments about safety data from numerous clinical trials.

As Dr. Merenstein stated, “We wrote this article for working clinicians. They are interested in the science but are busy and want a straightforward evidence-based resource. We are hopeful this will be a go-to resource during the busy clinic day.”

Verbatim from the article are the following practice recommendations:

  • Consider specific probiotics to prevent antibiotic-associated diarrhea, reduce crying time in colicky infants, and improve therapeutic effectiveness of antibiotics for bacterial vaginosis.
  • Consider specific probiotics to reduce the risk for Clostridioides (formerly Clostridium) difficile  infections, to treat acute  pediatric diarrhea, and to manage symptoms of constipation.
  • Check a product’s label to ensure that it includes the probiotic’s genus, species, and strains; the dose delivered in colony-forming units through the end of shelf life; and expected benefits.

The full text can be accessed by logging into Medscape.

A Miracle Treatment! Or Not?

By Daniel J. Merenstein, MD, Professor, Department of Family Medicine and Director of Research Programs, Georgetown University Medical Center, Washington DC

Here’s a scenario for a physician: A drug rep walks into your office. She has a new product she wants to talk to you about. You are super excited to talk to her as you have heard all about this product from many other sources. The data that are being reported are amazing. There are hundreds if not many more case reports of it working. People were dying and then totally recovered after being given this product. It has been witnessed and published! The efficacy is well over 90%. You are not sure there is any intervention you have ever heard of that has such amazing efficacy.  She tells you that in some of the cases, the patients were very sick and despite numerous courses of antibiotics they did not improve until this new product was given. You ask for more information as you are starting to think this must be like when doctors first heard of penicillin.

The product can be taken orally but that is not the way it is generally given. She tells you that although there are 2-3 ways to administer, most hospitals are doing it the most expensive way now. (You later learn that the typical– and most expensive – approach to administering the product may not even be the best approach.) But you withhold judgement as this sounds exciting. And remember, you have been hearing all about this from so many different sources.

But as you listen, it gets a little confusing. She tells you that the makeup of the product is different in nearly every application. This makes it exciting to use, as one really never knows what is in it. It is also relatively cheap to obtain, as the patient can have a friend just bring it in for them.

Since you are trained in evidence-based medicine, you ask a few questions. It is exciting there are all sorts of case reports but what about the randomized controlled trials, and what does the FDA say about it? You ask if you can look at the trials—there is no way you can review hundreds of studies now but if she leaves them for you, you will look at them this weekend. But before she leaves you ask a few quick questions. How many of these studies are randomized? She says 10. How many use a placebo? She says 6. You tell her what you really want to do is review all the randomized placebo-controlled blinded studies, if she can just leave those.

Later in the week you go pick up the folder she left and right away are a little surprised at how light it is. It looks like there are only 3 randomized placebo-controlled blinded studies, only two of which are peer-reviewed and published. One was a positive study; overall, 91% of patients in the new drug group achieved clinical cure compared with 63% in the control group. But you realize this is not exactly a placebo-controlled trial. What they did is compare two types of the new application. Furthermore, this study was conducted at two sites and at one of the sites both the new application and the control had nearly identical rates of improvement, both over 90%. Okay so this was not a perfect study, only 46 total participants, but still pretty exciting with over 90% improvement.

The second study had three groups of 83 people. Group A (2 doses of new drug), B (2 doses of placebo) and C (1 dose of new drug and 1 placebo dose). The efficacy for these three groups was 61%, 45%, and 67%, respectively. The primary endpoint was not met (P = .152). Interestingly, Group C, which included one dose of placebo, was superior to all placebo (group B) but Group A, in which the drug was given two times, was not superior to placebo.

The third study, a Phase II trial, appears to not be peer-reviewed or published, but just reported online. However, it does appear this was far from a positive study, with 44% of subjects (26 of 59) who received the new application improving versus 53% of subjects (16 of 30) who received placebo. I have been told that this study will be published soon and that a Phase III study of this intervention was also undertaken.

Well now you are getting a little more confused. You have heard from fellow docs, the lay press, medical literature and the drug rep that this new application was over 90% effective. But it appears in the three reasonably well controlled studies, the ones from which we can really draw conclusions, only one was positive and in that study the control was not a real placebo.

Besides efficacy, you remember that one has to always consider the cost and adverse events. Maybe this new application is like recommending the Mediterranean Diet, where the efficacy from studies is limited but the adverse events are nearly non-existent. But when you do a quick PubMed search you learn that this is far from the case with this product. This application has been reported to cause very serious adverse events, including extended-spectrum beta-lactamase (ESBL)–producing Escherichia coli bacteremia resulting in one death. You look online expecting that the FDA must have some serious warnings about this new drug. You don’t find any such warnings.

You may have guessed that the product is in fact a Fecal Microbiota Transplant (FMT). Besides having a professional interest in this much-discussed treatment, I have a personal interest. Last year my son was in a Johns Hopkins Hospital with a central line and two broad-spectrum antibiotics for a bone infection. I asked them to provide him with probiotics since the number needed to treat to prevent pediatric antibiotic associated diarrhea is 9, per a 2019 Cochrane review. This review included 20 randomized, placebo-controlled studies of a single strain. However, I was told no Hopkins hospital will administer probiotics, and further, that we could not even bring in our own because of concerns for the safety of others. But no worries – if my son got recurrent C. diff infection, Hopkins would allow this great new procedure, FMT.

In medicine I cannot truly imagine a probiotic with the same evidence base as FMT receiving such widespread acceptance and escaping regulatory scrutiny. And currently used probiotics have an excellent safety record. Just imagine, if this were a new drug being sold there would be widespread condemnation of the attempt to get approval mainly based on anecdotal case reports.  Shockingly, based on the level of evidence I have described many experts now think a randomized placebo-controlled trial is not even ethical for the placebo group, as of course they know FMT works.

It is a quandary. I am not opposed to FMT; I find it fascinating. But why has it been so widely accepted and why has the FDA, which in general has been very careful with probiotic applications in medicine, allowed this to proceed for recurrent C diff infection with only enforcement discretion? Both treatments administer live microorganisms, one with 31 placebo controlled randomized trials, including 8672 subjects [of C. diff prevention (number needed to prevent=42), not treatment like FMT], the other with pretty limited data.  I have my thoughts, but better for you to ponder it.

 

 

thumbnail of Clinical Guide Canada 2018

Updated Clinical Guide to Probiotics Now Available

Want some guidance on knowing which probiotic products have been tested for which clinical benefits, and understand the level of evidence supporting those benefits? Check out the 2018 versions of Clinical Guide to Probiotic Products Available in USA and Clinical Guide to Probiotic Products Available in Canada. Currently, these are the only 2 geographical regions covered by this initiative, although they are considering expanding to other regions. This guide is updated annually. Some changes for 2018 include addition of new indications ‘Mood and affect’, ‘Liver health’, ‘Weight management’ (Canada) and ‘Seasonal allergies’ and ‘Eczema/Dermatitis-Adult’ (United States). Evidence is reviewed independently by six academic experts and graded as Level I (highest), II or III. A grade of Level I requires evidence from at least one properly designed randomized human trial. This guide is produced by the Alliance for Education on Probiotics, and is an industry funded effort (see industry sponsors for US and Canadian versions).