2023 in Review: Highlights in the Field of Biotic Science

By Kristina Campbell, Prof. Colin Hill PhD, Prof. Sarah Lebeer PhD, Prof. Maria Marco PhD, Prof. Dan Merenstein MD, Prof. Hania Szajewska MD PhD, Prof. Dan Tancredi PhD, Prof. Kristin Verbeke PhD, Dr. Gabriel Vinderola PhD, Dr. Anisha Wijeyesekera PhD, and Marla Cunningham

Biotic science is an active field, with over 6,600 scientific papers published in the past year. The scientific work that emerged in 2023 covered many diverse areas – from probiotic mechanisms of action to the use of biotics in clinical populations. In parallel with the scientific advancements, consumer interest in gut health and biotics is at an all-time high. A recent survey showed that 67 percent of consumers are familiar with the concept of probiotics and 51 percent of those who consume probiotics do so with the aim of supporting gut health.

Several ISAPP-affiliated experts took the time to reflect on 2023 and identify the most important directions in the fields of probiotics, prebiotics, synbiotics, postbiotics, and fermented foods. Below are these experts’ picks for the top developments in biotic science and application during the past year.

Increased recognition of biotics as a category

After ISAPP’s publication of the recent synbiotics and postbiotics definitions in 2020-2021, board members and others began referring to probiotics, prebiotics, synbiotics, and postbiotics collectively as “biotics”. 2023 has seen the term being used more widely (for example, in article headlines and communications from major organizations) to refer to these substances as a broad group.

Steps forward and steps back in the regulation of live microbial interventions

The actions of regulators have a profound impact on how biotic science is applied and how products can reach consumers. On the positive side, 2023 heralded the regulatory approval of two live microbial drug products for recurrent C. difficile infection by the US Food and Drug Administration (FDA). Both products are derived from fecal samples, but one is delivered to the patient gastrointestinal (GI) tract by enema, and the other is delivered orally.

Meanwhile, a case of fatal bacteremia in a preterm infant who had been given a probiotic product prompted the FDA to issue a warning letter to healthcare practitioners about probiotics in preterm infants, as well as warning letters to two probiotic manufacturers. These actions had the concerning effect of reducing access to probiotics for this population, despite the accumulated evidence that probiotics effectively prevent necrotizing enterocolitis in preterm infants. As outlined in ISAPP’s scientific statement on the FDA’s actions, the regulatory decision weighting the risks of commission over omission did not reflect the wealth of evidence for probiotic efficacy in this population and the low risk of harm.

Wider awareness of the postbiotic concept and definition

Scientific discussions on postbiotics continued throughout 2023, with several debates and conference sessions devoted to discussion of the postbiotic concept – including the status of metabolites in the definition. According to ISAPP board member Dr. Gabriel Vinderola PhD, who was a co-author on the definition paper and an active participant in many of these debates, the ISAPP definition is gaining traction and the debates have been useful in pinpointing further areas of clarification for the sake of regulators and other stakeholders. As shared with the audience at Probiota Americas 2023 in Chicago, Health Canada became the first regulatory agency to address the definition, and has started considering the term postbiotics under the ISAPP definition.

Advances in technologies for analyzing different sites in the digestive tract

When studying how biotics interface with the host via the gut microbiota, the science has relied mainly on analysis of fecal samples, with the majority of the GI tract remaining a ‘black box’. But a 2023 paper by Shalon et al., which was discussed at the ISAPP meeting in Denver, describes a device able to collect intestinal samples from different regions in the GI tract. Analysis of the metabolites and microbes indicated clear regional differences, as well as marked differences between samples in the GI tract versus fecal samples (for example, with respect to bile acids); an accompanying paper revealed novel insights into diet and microbially-derived metabolites. Efforts are underway across the world to develop smart pills or robotic pills that take samples all along the GI tract. Some devices have sensors that immediately signal to a receiver and others have been engineered to release therapeutic contents. Although these technologies may need more validation before they are useful in research or clinical contexts, they may greatly expand knowledge of the intestinal microbial community and how it interacts with biotic substances.

First convincing evidence linking intake of live microbes with health benefits

When an ISAPP discussion group in 2019 delved into the question of whether a higher intake of safe, uncharacterized live microbes had the potential to confer health benefits, it spurred a program of scientific work to follow. Efforts of this group in subsequent years led to the publication of an important study in 2023: Positive Health Outcomes Associated with Live Microbe Intake from Foods, Including Fermented Foods, Assessed using the NHANES Database. Researchers analyzed data from a large US dietary database and found clear but modest health benefits associated with consuming higher levels of microbes in the daily diet.

The benefits of live dietary microbes are being explored further in the scientific literature (for example, here, here, and here) and are likely to remain an exciting topic of study in the years ahead, building evidence globally for the health benefits of consuming a higher quantity of live microbes.

Increased interest in candidate prebiotics

Polyphenols have long been studied for their health benefits, but newer evidence suggests they may have prebiotic effects, achieving their health benefits (in part) through interactions with the gut microbiota. A theme at conferences and in the scientific literature has been the use of polyphenols to modulate the gut microbiota for specific health benefits. More than a dozen reviews on this topic were published in 2023, and several of them focused on how polyphenols may achieve health benefits in very specific conditions, such as diabetes or inflammatory bowel disease.

Another substrate receiving much attention for its prebiotic potential are human milk oligosaccharides (HMOs). HMOs, found in human milk, support a nursing infant’s health by encouraging the growth of beneficial gut microbes. Several articles in 2023 have delved into the mechanisms of HMO metabolism by the gut microbiota, and explored its potential as a dietary intervention strategy to improve gut health in adults.

Sharper focus on evidence for the health and sustainability benefits of fermented foods

Fermented foods are popular among consumers, despite only early scientific knowledge on whether and how they might confer health benefits (see ‘First convincing evidence linking intake of live microbes with health benefits’, above). ISAPP board member Prof. Maria Marco PhD co-authored a review led by Dr. Paul Cotter PhD in Nature Reviews Gastroenterology and Hepatology on the GI-related health benefits of fermented foods. The paper clearly lays out the potential mechanisms under investigation and identifies gaps to be addressed in the ongoing study of fermented foods.

As calls for reducing carbon footprints continue across the globe, plant-based fermented foods are being singled out as an area for innovation and expansion. One example of how these foods are being explored is through the HealthFerm project, a 4-year, 13.1 million Euro project involving 23 partners from 10 countries, which is focused on understanding how to achieve more sustainable, healthy diets by leveraging fermented foods and technologies.

Novel findings related to lactic acid bacteria

Lactic acid bacteria (LAB) are some of the most frequently-studied microbial groups, but scientists have only begun to uncover the workings of this diverse group of bacteria and how they affect a variety of hosts. These bacteria are used as probiotics and are often beneficial members of human and animal microbiomes, and they are also essential to making fermented foods. This year marked the first ever Gordon Research Conference on LAB in California, USA. Attendees showcased the diversity of research on lactic acid bacteria, and the meeting was energized by the early investigators present and by the interest in LAB in other disciplines including medicine, ecology, synthetic biology, and engineering. One example of a scientific development in this area was the further elucidation of the mechanism of Lactiplantibacillus plantarum’s extracellular electron transfer.

Progress on the benefits and mechanisms of action for probiotics to improve the effectiveness of cancer immunotherapies

Researchers have known for several years that the gut microbiota can be a determinant of the efficacy of cancer immunotherapy drugs that involve immune checkpoint blockade, but interventions that target the gut microbiota to improve response to immunotherapies have been slower to develop. This year saw encouraging progress in this important area, with probiotic benefits and mechanisms of action being demonstrated in several papers. Two of the most highly cited probiotics papers of the year centered on this topic: one showing how a tryptophan metabolite released by Limosilactobacillus reuteri (formerly Lactobacillus reuteri — see this ISAPP infographic) improves immune checkpoint inhibitor efficacy, and another paper that reviewed how gut microbiota regulates immunity in general, and immune therapies in particular.

Updated resource available on probiotics and prebiotics in gastroenterology

This year the World Gastroenterology Organisation (WGO) guidelines on probiotics and prebiotics were updated to reflect the latest evidence, with contributions from ISAPP board member Prof. Hania Szajewska MD PhD and former board member Prof. Francisco Guarner MD PhD. The guideline lists indications for probiotic and prebiotic use, and how the use of these substances may differ in pediatric versus adult populations. Find the guideline here.

The American College of Gastroenterology recommends against use of probiotics for primary or secondary prevention of C. difficile

By Prof. Daniel Merenstein MD, Georgetown University School of Medicine and Prof. Eamonn Quigley MD FRCP FACP MACG FRCPI,  Houston Methodist Hospital and Weill Cornell Medical College

The American College of Gastroenterology (ACG) recently published ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostridioides difficile Infections. This review considers probiotics for prevention of CDI. The ACG’s recommendations regarding probiotics and C. difficile infection (CDI) are:

  1. We recommend against probiotics for the prevention of CDI in patients being treated with antibiotics (primary prevention) (conditional recommendation, moderate quality of evidence).
  2. We recommend against probiotics for the prevention of CDI recurrence (secondary prevention) (strong recommendation, very low quality of evidence).

The ACG guidelines take a different approach to the evidence relating to probiotics than that of the American Gastroenterological Association (AGA) or the Cochrane Collaboration. The most recent Cochrane review on prevention of C. difficile-associated diarrhea (CDAD) concluded in brief, “moderate certainty evidence suggests that probiotics are effective for preventing CDAD”. In the AGA Clinical Practice Guidelines on the Role of Probiotics in the Management of Gastrointestinal Disorders, the recommendation was:

In adults and children on antibiotic treatment, we suggest the use of S. boulardii; or the 2-strain combination of L. acidophilus CL1285 and Lactobacillus casei LBC80R; or the 3-strain combination of L acidophilus, Lactobacillus delbrueckii subsp bulgaricus, and Bifidobacterium bifidum; or the 4-strain combination of L. acidophilus, L. delbrueckii subsp bulgaricus, B. bifidum, and Streptococcus salivarius subsp thermophilus over no or other probiotics for prevention of C difficile infection. (Conditional recommendation, low quality of evidence.)

In both the AGA and ACG guidelines the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system was used. How, then, did they come to such different conclusions and recommendations?

The ACG guideline stated,  “a meta-analysis of 19 RCTs that concluded that probiotics were helpful at prevention of CDI in hospitalized patients if given close to start of antibiotics, with a 70% lower risk if probiotics were started within 2 days but falling to a 30% risk reduction if probiotics were started after 2 days of antibiotic therapy”. But then they did not take timing of probiotic administration into account as they assessed the evidence. Instead, they use the negative PLACIDE trial to override all other evidence for primary prevention. The PLACIDE trial was a well-done trial, but participants started their probiotic treatment 3- 7 days after antibiotics. Thus, it would seem that the ACG guideline’s conclusion could favor probiotics as long as they can be started within 2 days of the antibiotic and not recommend against probiotic use.

The ACG guideline objects to combining data on different probiotic strains in meta-analyses in order to provide evidence in favor of probiotics: “Evidence to support probiotics for this indication comes mainly from meta-analyses that pool data from small trials of different probiotic formulations and methodologies.” This is true, but the Cochrane review found thirty-nine studies (8,672 participants) that met their eligibility criteria and it is noteworthy that several different probiotics were found to be effective. The Cochrane number needed to treat (NNT) to prevent CDI is 42. However, if the ACG thought this was driven by too many negative trials, they could have qualified their recommendation. The Cochrane review found in subgroup analyses that probiotics are most effective (NNT=12) among trials with a CDI baseline risk >5%. But to conclude there is no benefit of probiotics for primary CDI is not supported by the evidence.

It is puzzling that ACG insists that the probiotic literature be pooled in a strain-specific manner, yet they support conclusions on fecal microbial transplant (FMT) even though FMT interventions are much more heterogeneous than probiotics in regard to composition and mode of administration. They recommend FMT for treatment of C. difficile based on only three double-blinded randomized clinical trials (here, here and here), only one of which was positive. The positive FMT study was conducted at two sites and compared donor stool (heterologous) versus patient’s own stool (autologous) administered by colonoscopy. Overall, 91% of patients in the FMT group achieved clinical cure compared with 63% in the control group. At site #1, the cure rate with donor FMT was 90.0% (CI, 51.8% to 98.7%) versus 42.9% with autologous FMT, whereas in site #2 the cure rate was essentially identical between the two groups. At site #2, donor FMT cure rate was 91.7% (CI, 57.2% to 98.9%) compared with 90.0% (CI, 51.8% to 98.7%) after autologous FMT. We mention this to question the consistency of evidence standards that the ACG guideline authors impose. They admonish pooled data from small trials of different probiotic formulations and methodologies yet ignore heterogeneity in FMT interventions. The data reviewed for probiotics was primarily from double-blinded randomized trials, while for FMT they rely on case series, uncontrolled studies or retrospective studies.

The authors go on to state, “… high quality evidence to support probiotics for most conditions is scarce.” How do they define “scarce” and “most conditions”? As mentioned, Cochrane found thirty-nine studies (8,672 participants) for prevention of CDAD. Under “summary of evidence”, the authors address issues such as size of the market, regulatory oversight, product cost and quality control problems with commercial products, all of which may reflect practical concerns with some probiotic products in the marketplace, but have nothing to do with available evidence. Furthermore, it is the only intervention where the financial value of the industry and cost of interventions is mentioned. Why are the size of the market or costs for FMT or drugs not just as relevant to this review? Cost is discussed throughout the recommendation but without performing or citing a formal cost analysis or cost-effectiveness analysis, even though there are approaches for doing so to inform evidence-based decision-making (here).

The authors indict probiotics for concerns about safety, citing not the thorough review sponsored by AHRQ and conducted by the RAND corporation that looked at 622 studies and found no statistically significant increased relative risk of the overall number of experienced adverse events (RR 1.00; 95% confidence interval [CI]: 0.93, 1.07, p=0.999), but by referring to a review article that cites case reports of blood infections and refers to one study with microbiota, not clinical, endpoints done in Israel on one commercial product. The data actually show that for well characterized, clinically tested probiotics with high levels of quality control the evidence for infectious complications in non-vulnerable populations is virtually nil. ACG does not mention that FMT was shut down due to safety concerns as soon as the pandemic started.

In summary, we are not convinced that the authors have justified their recommendation against the use of probiotics in relation to CDI prevention. They fail to clarify why the results of their GRADE evaluation of probiotic evidence for prevention of C. difficile resulted in totally different conclusions compared to the AGA document, which found evidence sufficient for conditional recommendation of four probiotic preparations. Further,  the review of evidence for probiotics, whether in terms of efficacy or safety, should be addressed in a manner consistent with other interventions considered and editorializing on issues such as market size, profits and product cost, in the absence of an objective approach using appropriate instruments, should be avoided.