Posts

Challenges ahead in the probiotic field – insights from Probiota2019

By Dr. Mariya Petrova, Microbiome insights and Probiotics Consultancy (MiP Consultancy), Bulgaria.

Recently, I attended the Probiota Conference, which brings together representatives from industry and academia on the topic of probiotics and related fields. The goal of many of the speakers at the conference was to provide insight about how to translate scientific discoveries for, and share commercial insights with, end consumers. I would like to share a few points that caught my attention.

Do good science. End-consumers rely on news coverage of science, which unfortunately is too often more sensationalist than accurate. Prof. Gregor Reid’s talk, “Disentangling facts from fake news,” noted that news article titles such as “Probiotics labeled ‘quite useless’” and “Probiotics ‘not as beneficial for gut health as previously thought’” – after research was published last year in Cell (here and here) – were misleading to end-users and of great concern to people in the field of probiotics who are familiar with the totality of the data. Researchers have a responsibility to situate their results in the context of existing evidence. However, Prof. Reid also observed that “too many products are called probiotics with strains not tested in humans”; “too many products are making un-verified claims”; “too many journalist don’t have expertise in science”; “too many rodent studies making association with human health”; “researchers making up their own terms without defining them”. So how do we solve this? Do good science and communicate results clearly, accurately and without bias – to journalists, to peers and to end-users. (See related ISAPP blogs here and here).

Understand the probiotic mode of action. Understanding probiotic modes of action may be the most challenging issues ahead of us. Currently, we have too little understanding of mechanisms by which probiotics provide health benefits. Probiotic strains are living microorganisms, which most likely work through multiple mechanisms and molecules, but we indeed need more in-depth research. When I reflect on my own experience and the struggles to do molecular studies, I can appreciate how difficult this research is. Although others may be focused on screening the microbiome and developing bioinformatics tools, I applaud the researchers trying to develop deeper understandings of how probiotics function, which will enable more rational approaches to probiotic selection and use. (See related ISAPP blog here.)

New names, new glory. The forthcoming reclassification of the Lactobacillus genus was discussed. We are faced with the largest taxonomic upheaval of this genus in history, including many economically important species. The current Lactobacillus genus will be split into at least ten genera. The species and strain names will not change, but many species will have different genus names. Researchers are expected to propose that all new genera names will begin with the letter “L.” The reclassification can help us better understand the mode of action of industrially important probiotics and help tailor probiotic applications. The changes will be communicated with regulatory bodies such as EFSA and FDA. Name changes could also have consequences for medical stakeholders and may lead to potential issues with intellectual properties. Consumers of probiotic products will likely be less affected by this change, but an educational website targeted to consumers could be beneficial. (See related ISAPP blog here.)

EFSA claims as expected. EFSA claims and regulations were also discussed. To date, approximately 400 health claims applications have been submitted to EFSA without any approved. Experts advised to keep the claims simple and easy. EFSA’s strict approach to claims may have the advantage of compelling industry to conduct studies that better support health claims. Responsible companies are adapting to regulatory requirements and are developing good products, and they will probably succeed in meeting claim standards. Nevertheless, it seems that although health claims are deemed important to companies and medical representatives, end-users of probiotics obtain information from other sources. Obtaining health claims is only one piece of the puzzle. Also important is providing science-based information to end-users, especially those keen on keeping their good health through nutrition.

Be transparent. Don’t forget to disclose the strains you use on product labels. Strains designation is one key way to distinguish your product and it is an important way to communicate to your consumer exactly what is in your product. Surprisingly still, some scientific papers fail to report the strains they used to perform their clinical trials. The field is moving towards more transparency with high-quality clinical trials, the best-selected strains for certain condition and clear designation of the probiotic strain on the label. (See related ISAPP infographics here, here and here)

Educate, educate and again educate. Often discussed at the conference was the subject of educating the end consumers. Companies should take a proactive approach to engage consumers and promote understanding of the available evidence where probiotics can promote health. It is difficult for consumers to differentiate science-based evidence from journalistic sensationalism or researcher self-aggrandizement. A major obstacle is also the ready availability in the marketplace of unproven products containing strains that have been tested only in animal models or not proven experimentally at all. Taking the need for reliable communications on probiotics and probiotics to end-users very seriously, ISAPP has developed a range of science-based videos and infographics. The infographics include topics such as how to read the labels of the probiotics products (USA and EU versions) and a probiotic checklist. Thanks to the enthusiastic work of many volunteers, some ISAPP infographics can now be found in 10 different languages.

Despite having great discussions, one thing keeps troubling my mind: Where is the field of probiotics going and how will it look like in 10 or 20 years? The fight for probiotics is not over, despite the progress we have made so far.

Clinical evidence and not microbiota outcomes drive value of probiotics

By ISAPP Board of Directors, plus Prof. Francisco Guarner and Dr. Bruno Pot

September 10, 2018

Two recent papers have generated much adverse publicity for the probiotic field. Headlines driven by sensationalism, not data, claim “Probiotics labelled ‘quite useless’” (BBC) and “Probiotics ‘not as beneficial for gut health as previously thought’” (The Guardian). The quotes are from author Eran Elinav, who generalizes the study findings to all ‘probiotics’ as a class – a generalization that ignores that specific probiotic are meant for specific purposes. This research was published this month in Cell (here and here).

The scope of these papers is limited to microbiome data; no clinical endpoints are assessed. Without clinical evidence, it is not possible to conclude about the tested probiotic’s usefulness, and it is certainly not possible to conclude about probiotic usefulness in general. Stating that probiotics are ‘quite useless’ or ‘not as beneficial’ is, quite simply, wild and factually inaccurate. The authors discount the existing body of evidence for probiotic health benefits, including Level 1 placebo-controlled, randomized trials. Cochrane reviews (the gold standard used by physicians and public health policy makers) of the totality of evidence show that specific probiotics can prevent antibiotic associated diarrhea (AAD) and C. difficile diarrhea. This evidence has been translated into evidence-based recommendations for probiotics issued by medical groups. Regardless of an effect on the microbiota, these are established, evidence-based benefits of probiotics.

No clinical endpoints tracked in either study

What these papers provide is extensive data about the impact of one product containing 11 common probiotic species on different microbiome measures. To the authors’ credit, they analyzed mucosal and luminal samples from humans, in addition to samples from stool.  Nonetheless, the probiotic definition [live microorganisms that, when administered in adequate amounts, confers a health benefit on the host (Hill et al 2014)] does not require that probiotics function via interaction with the microbiota, nor is there much evidence that they alter the microbiota composition in an appreciable manner. Absence of impact on microbiome measures is not evidence that probiotics lack clinical or physiological effects. Probiotics function via many mechanisms that might not be revealed by the measures made in these papers.

Methodological concerns

A careful reading of this paper reveals many methodological concerns.

The extensive data in the paper is an assortment of different types of analyses. For example, for a beta-diversity metric, they sometimes use weighted Unifrac, sometimes unweighted Unifrac, and sometimes Bray-Curtis, without an explanation for their choice. These approaches to presenting the data can give very different results. With the transcriptomics data, sometimes the authors choose samples from the duodenum and sometimes the jejunum. For example, in figure 6, panels C-E compare the difference in gene expression between the naïve group and the treatment in the duodenum, whereas in panels F-H they compare the antibiotic state with the treatment in the jejunum. Such an approach leads the reader to speculate that the authors picked the metrics and data that best fitted the story they wanted to tell. In a well-conducted clinical trial, the statistical plan is registered before the study starts, to assure readers that the scientific process of advancing a hypothesis and designing a study to test the hypothesis is respected.

The probiotic was not administered to human subjects until 7 days after the treatment with antibiotics commenced, after the damage by the antibiotics has been done. Dozens of human studies with specific probiotics have documented that probiotics prevent AAD or C. difficile infection. In most clinical trials, the probiotic is administered together with the antibiotics. A recent meta-analysis concluded that “administration of probiotics closer to the first dose of antibiotic reduces the risk of (Clostridium difficile infection) by >50% in hospitalized adults.” (Emphasis added) The approach in the Suez et al paper is not consistent with the aforementioned clinical studies, with how probiotics are used in clinical practice or with the knowledge of how probiotics most likely prevent AAD. When provided on the same days as antibiotics, probiotics have the opportunity to prevent overgrowth of opportunistic, antibiotic-resistant microbes by competitive exclusion in the ecosystem. Therefore, the microbiome findings of Suez et al likely cannot be applied to clinical trials with such different time course of antibiotic/probiotic administration.

Several conclusions about the effect of probiotics on the microbiota were based on relative abundance measures, which do not relate to actual bacterial numbers or metabolic activity of all relevant species in the gut.

The antibiotic treatment used was potent for a study population that would otherwise not need antibiotics. Volunteers were administered oral ciprofloxacin 500 mg bi-daily and oral metronidazole 500 mg tri-daily for a period of 7 days. They are both very strong and indiscriminate antibiotics, having a severe impact on the gut microbiota.  One could question if this drug therapy might have a different impact on the microbiome of a healthy person compared to a patient likely to receive this treatment, i.e., one whose microbiota ecosystem is disrupted by disease or fever.

The probiotic product

A serious issue is that the authors chose a product for this study that has no demonstrated clinical benefits. At a minimum, the product used for this study should have evidence for impact on antibiotic associated conditions, including symptoms or emergence of opportunistic pathogens. The 3 (possibly 2, as the latter 2 appear to be the publication of the same data) human studies conducted on this product (here, here and here), showed no clinical benefit. Thus, the investigators tested the potential benefits of a product for which no benefits had been previously shown. Further, the papers do not adequately describe the product; only a total count (25 billion) is given; counts of each strain – through the end of the administration period – should have been provided. Furthermore, the authors state about the product that “B. longum was probably represented by two strains.” This constitutes imprecise characterization unacceptable in a well-defined probiotic product.

Appearance of author bias

The conclusions reached in the papers promote a personalized approach to probiotic use. In an article on the BBC, the lead author stated, “In the future probiotics will need to be tailored to the needs of individual patients. And in that sense just buying probiotics at the supermarket without any tailoring, without any adjustment to the host, at least in part of the population, is quite useless.” The authors did not disclose they are involved with a company promoting this personalized approach.

Probiotic colonization

The authors suggest that their finding that probiotics do not colonize long term is noteworthy. In fact, researchers in this field have known this for 30 years: most probiotics do not colonize or become established as part of the resident microbiota. A 2016 paper by Madonado-Gomez et al was notable precisely because a Bifidobacterium longum strain was found that did persist. In most cases, probiotic effects are likely mediated by transient effects.

Responders and non-responders

A well-established concept in medicine is that some people respond clinically and physiologically to interventions and others don’t. This is the case with much of probiotic as well as pharmaceutical literature. (See review on responders and non-responders to probiotics by Reid et al.) An individual’s response is likely impacted by diet, resident microbes, host genes and host physiology/health. The validity of a personalized approach to probiotic administration remains to be determined, as evidence for a clinical benefit to the approach is needed. Microbiome data alone are not sufficient.

Need for future research

In the Cell publications, the authors acknowledge their study was limited due to lack of clinical endpoints and the testing of only a single product. It is unfortunate that the press marched ahead with inflammatory stories about the negative effects of probiotics based on such paltry evidence. The scientific community understands that this is one study, on a small number of human subjects, by one research group. Sweeping conclusions cannot be made. There are many hypotheses that can be generated from this study that can lead to follow up studies, which we hope will ensue.

Conclusions

Hundreds of human trials have demonstrated clinical benefits of probiotics and several evidence-based recommendations have been issued by medical organizations. Of course, not all studies are positive. Not all probiotics work for all conditions. But the safety record of probiotics administered to healthy as well as many patient populations is well-established. Numerous media outlets have reported on these two studies as if they are proof that probiotics are useless at best and harmful at worst. This irresponsible reporting may lead people who are benefitting from probiotics to stop using them, potentially causing real harm.

The erroneous interpretation of the current study and previous research by the primary author is disingenuous, as he states,  “Contrary to the current dogma that probiotics are harmless and benefit everyone, these results reveal a new potential adverse side effect of probiotic use with antibiotics that might even bring long-term consequences.” This comment and the papers’ conclusions are not corroborated by the totality of safety and efficacy clinical evidence on probiotics, which includes thousands of probiotic-treated subjects. In comparison, the data in Suez et al come from microbiome assessments from only eight probiotic-treated subjects.

Furthermore, this paper evaluated just one product of limited provenance and containing a combination of multiple, incompletely characterized strains. This is in sharp contrast to numerous studies of precisely characterized strains demonstrating well-defined and beneficial engagements with the host. Zmora and colleagues and Suez and colleagues are to be congratulated on their attempts to characterize in detail the impact of one probiotic product on a perturbed, human microbiome. We look forward to further such studies employing well-characterized strains with demonstrated clinical benefits and including relevant clinical endpoints.

Additional reading:

ISAPP comments: International Group of Probiotic Scientists Weighs in on Flawed Conclusions From New Scientific Papers

American Gastroenterological Association response: AGA’s Interpretation of the Latest Probiotics Research

Response by Prof. Gregor Reid:  Trying to Close the Stable Door After the Horse Has Bolted

efficacyvseffectiveness

Efficacy and Effectiveness Studies

By Michael D. Cabana, MD, MPH

In the world of clinical trials, reproducibility (or consistency) of results across different clinical trials improves clinicians’ confidence in an intervention (Hill, 1965).  However, when reviewing the evidence for a probiotic or prebiotic supplement, the results are sometimes conflicting.  One study claims an intervention may work.  Another study claims that an intervention may not work. So how does the clinician deal with this situation?

To know how much confidence to place in any claim of benefit, clinicians need to consider the totality of the evidence and the quality of the studies. One tool is the systematic review process, which in an unbiased manner searches for all studies for a particular intervention, and when possible, combines results into a meta-analysis. The ‘summary’ of these data point to either an effect or no effect. The best way to combine data is using an individual patient-data meta-analysis (IPDMA). In addition, a clinician should determine whether the clinical trial is an effectiveness study or an efficacy study (Singal 2014).

 

Efficacy or Effectiveness?   

Efficacy studies ask, “does the intervention work in a defined (usually an “ideal”) setting?”  In general, the inclusion criteria for study participants will be very selective.  Patient adherence tends to be closely monitored. The clinicians conducting the trial may be specially trained in the intervention and its application. The intervention occurs in an ideal setting and the risk of other confounding interventions (e.g., unusual diets, concurrent treatments) will be limited.

On the other hand, effectiveness studies ask, “Does the intervention work in a real-world setting?”  The inclusion criteria for study participants tends to be less selective.  Patient adherence to the protocol is not necessarily strictly enforced. The clinicians conducting the trial tend to be representative of the typical physicians who would treat this condition.  The intervention occurs in a more ‘real-world’ setting where the presence of other confounding factors may be present.

For example, two relatively recent studies both examined the effect of a probiotic intervention, L. reuteri DSM 17938 for the treatment infant colic.  A study conducted by a team in Italy (Savino et al. 2010) noted that the intervention reduced colic symptoms; however, the study conducted by a team in Australia (Sung et al. 2014) showed no effect on colic.

Why the different results? In the Italian study, all the infants were breastfed.  In addition, the breastfeeding mothers limited their dairy intake.  The infants tended to be younger (mean age 4.4 weeks) and tended not to have other treatments for colic or gastrointestinal symptoms.  In contrast, the infants in the Australian study were breastfed or formula fed. The infants were older (median age 7.4 weeks) and were more likely to have been exposed to other treatment for gastrointestinal symptoms (such as histamine-2 blocker or proton pump inhibitors).  The infants were recruited from many different settings such as the emergency department.

Although both the Italian and the Australian study evaluated the same probiotic intervention for the same condition, the studies offer different information in terms of efficacy and effectiveness.  Describing a study as either an “efficacy” study or an “effectiveness” study is not always dichotomous.  Rather, these studies exist on a spectrum, from being more like an efficacy study versus more like an effectiveness study. In the example above, the Italian study had stricter criteria and fewer confounding factors.  As a result, it would tend to be classified as an efficacy study.  The Australian study enrolled infants with colic who were older and had a greater likelihood to be exposed to other interventions.  This study would tend to be classified as more of an effectiveness study.  The fact that the Australian study was a null study does not mean that the intervention was not effective in the ‘real world’.  Rather, for the patients enrolled, the treatment was not effective when used in that particular setting and context.  Perhaps you may encounter infants with colic who have feeding history and medical history more like the infants from the Italian study. Understanding the context of the studies helps identify those characteristics that may or may not apply to the infants with colic who you may treat in your clinic.

 

Which is better: Efficacy or Effectiveness?

When developing a new or experimental intervention, an efficacy study might be important to increase the likelihood of detecting a positive change.  However, “real world” factors may make a difference in how a product is used.  Perhaps an intervention might be inconvenient (due to multiple doses throughout the day) or unpalatable for the patient.  Perhaps the dosing regimen is complicated and the primary care providers don’t apply the correct dosing for patients. In these cases, an effectiveness study might be a better guide to how useful the intervention will be in clinical practice.

As a final note, it can be tempting to simply read the abstract of a clinical trial to assess the results of a study.  However, in many instances the crucial details of the study (e.g., how the study participants were selected, who was included or excluded, what type of clinical setting was used) are buried in the methods section of the study.  Patient diet, exposure to other treatments and comorbid conditions are all common confounding factors encountered in trials evaluating supplements.  When reading through the literature and understanding if a study is applicable to your practice, be sure to understand the full context and purpose of the study.  “Was this study useful for determining clinical efficacy or clinical effectiveness?” is an important question for readers of probiotic and prebiotic clinical trials. Keeping this question in mind may help you better resolve what may appear to be inconsistency among clinical trials.

baby crying colic

ISAPP Digs Deeper into Evidence on Probiotics for Colic with New Meta-Analysis

January 3, 2018.

Evidence exists for gut microbiota differences between infants with and without colic, with one probiotic strain of particular interest therapeutically for colicky infants: Lactobacillus reuteri DSM17938. Discussion groups convened at the 2014 and 2016 ISAPP meetings, both led by Prof. Michael Cabana MD MPH of University of California, San Francisco, and member of ISAPP’s board of directors, focused on the existing randomized, controlled trials and how they might inform medical recommendations.

The discussion group at the 2014 ISAPP meeting in Aberdeen Scotland resulted in a paper describing the individual patient data meta-analysis (IPDMA) protocol, which was published in BMJ Open.  The 2016 ISAPP meeting in Turku Finland culminated in the publication of this IPDMA in the journal Pediatrics: Lactobacillus reuteri to treat infant colic: a meta-analysis. Dr. Valerie Sung, Royal Children’s Hospital, The University of Melbourne and Murdoch Children’s Research Institute, was lead author of this paper, whose coauthors included a team of 11 other experts spanning three continents.

This high quality meta-analysis used individual patient data rather than group means to get a more accurate picture of the efficacy of the probiotic. The paper concluded that L. reuteri DSM17938 is effective and can be recommended for breastfed infants with colic. However, data are lacking for efficacy in formula-fed infants.

“Any single randomized clinical trial involves a great deal of time and resources from investigators, institutions and most importantly, patients. By working together, our team was able to combine data to learn more about the effects of L. reuteri DSM 17983 on the treatment of infant colic. This analysis is a great example of the power of close international collaboration by clinical investigators.”

Related:

Probiotics for Colic—Is the Gut Responsible for Infant Crying After All? (Open access through Jan 10, 2018)

https://www.mcri.edu.au/news/hope-parents-children-colic

watch with times they are a-changin quote by bob dylan

The Times They Are A-Changin’ With Probiotics

December 15, 2017. By Prof. Daniel Merenstein, MD, Department of Family Medicine, Georgetown University Medical Center, Washington DC.

I had a surprising encounter a few weeks ago in the clinic. I was caught off guard, had to take a step back and think about what happened. I recommended to my patient that she take a probiotic with the antibiotic I was prescribing. She said to me, “What is a probiotic?” My response was, “A probiotic,” as if it didn’t require any further explanation. It was nearly incomprehensible to me that she didn’t know what a probiotic was and maybe she just didn’t hear me or just didn’t understand me (I tend to speak too fast). But no, she just didn’t know what one was. I then realized how unusual this encounter was.

Something has been a-changing. It hasn’t been a quick process and I am not sure when it changed, but it did. Even just a few years ago when I recommended supplementing a course of antibiotics with a probiotic, people were generally receptive and had a vague idea about probiotics. However we generally had to talk about what probiotics were and how to use them. Fast forward to today and it appears to me that 95% of people respond, “I already take one.” Much more common than hearing “What’s a probiotic?” is to hear, “Of course, you always have to take a probiotic when taking an antibiotic.”

I am currently recruiting for my 8th probiotic clinical trial (PLAY ON). My team has recruited over 1,400 participants for previous studies. We have a system and a great team, but we are having the most difficult time recruiting for this study. I have thought a lot about why and I think it comes down to the times they are a-changin’. When we started on this research path 12 years ago, our research team and the subjects we recruited were excited about probiotics and their potential. But today the public doesn’t see the potential of probiotics; they know probiotics impact the gastrointestinal tract and should be used when taking antibiotics. Therein lies our challenge: to be in our study a subject has to be willing to take the chance of being in the placebo group. That makes little sense to a public that already knows to take a probiotic when on antibiotics.

My first two NIH studies were funded by the National Center for Complementary and Integrative Health, while my current study is funded by the National Institute of Child Health and Human Development. The shift has occurred from complementary, to mainstream. One need no longer attend a microbiome or probiotic conference to hear talks on probiotics; nearly all clinical conferences will now have probiotic talks. I am confident my team will adjust to these changing times but I think more important is how researchers and clinicians adjust. Probiotics are not alternative options anymore, the evidence base is robust and some indications well-studied. The discussions need to shift from, “You should have probiotics on formulary” to specific recommendations of which probiotics should be used for what indications. Similarly when discussing other disease states in the gut (e.g. necrotizing enterocolitis, infantile colic, and irritable bowel syndrome), it is time to take the next step and discuss specific recommendations. I am sure I will see another patient who has never heard of probiotics, but I’m willing to bet that doesn’t happen for many months. More likely, I expect I will be discussing the efficacy of the products my patients are already taking. That is an important change that docs need to think about.

Come gather ’round people
Wherever you roam
And admit that the waters
Around you have grown
And accept it that soon
You’ll be drenched to the bone.
If your time to you
Is worth savin’
Then you better start swimmin’
Or you’ll sink like a stone
For the times they are a-changin’.

Bob Dylan, Nobel Laureate

The Times They Are A-Changin’

Columbia Records, 1964