Mini-tutorial on statistical analysis: Correcting a common misinterpretation of p-values

Daniel Tancredi PhD, Professor of Pediatrics, UC Davis School of Medicine and Center for Healthcare Policy and Research, Sacramento, CA.

Decision makers frequently rely on p-values to decide whether and how to use a study to inform their decisions. Many misinterpret what a low p-value actually means, however. I will attempt to correct this common misinterpretation and explain how to use small p-values to evaluate whether a null hypothesis is plausible. I will show that a low p-value should be used in the same way that a clinician should use a valuable but imperfect clinical diagnostic test result; as one factor, but not the only one, on which to base a decision.

Typically, readers assume that if a p value is low, such as less than 0.05, and thus the test statistic is statistically significant at the conventional level, that there is a good chance that the study results are not “due to chance”. But it is not as simple as that. Let’s suppose that one has a p-value that was generated in a well-designed placebo-controlled randomized clinical trial. We will assume that the trial had a sample size that would provide 80% power to detect what the investigators considered to be the minimum clinical significant difference. The null hypothesis in a trial like this would predict that there is no difference between the placebo and intervention arms for the primary outcome. Once the data were analyzed and reported properly, the p-value was estimated to be just under 0.05. Does this p value less than 0.05 mean that the null hypothesis has no more than a 5% probability of being true? Does it even ensure that the null hypothesis is unlikely? If the calculated p-value was greater than 0.05 (let’s say p=0.10) would that be enough to ensure that the probability of the null hypothesis being true is definitely greater than 5%?

The answer to each of these questions is “no”! This is where, unfortunately, it begins to get (a little) complicated for many users of statistics. The p-value is calculated under the assumption that the null hypothesis is true, and so it does not and cannot measure the probability of that assumption being correct.1 Even though it is common to interpret a p-value as though it is an objective and sufficient statement about the probability that the null hypothesis is true, that is not the case. Statisticians have been trying to communicate this nuance for decades, including the issuance of a statement in 2016 on p-values by the American Statistical Association, a rare statement on statistical practice in that prominent organization’s long history1.

Using a p-value to calculate the probability that the null hypothesis is true

If one wants to use a p-value as one factor in a procedure that can produce a statement about the probability that the null hypothesis is true, one needs to supply an additional input that can be very difficult to obtain. This is a prior (or pre-study) probability, a quantitative estimate of the probability that the null hypothesis is true. This is based on a considered judgment of the state of existing knowledge, what is already known (outside the study results) about how and by how much the intervention may affect the outcomes being assessed.2 Of course, such a judgment can vary a great deal from one individual to the next, according to his/her ability to gather and appraise that knowledge. These judgments can also be influenced by other interests, including financial and ideological, how much of a stake one has in each of the various competing scientific explanations.  Depending on the prior (or pre-experiment) probability for the null hypothesis, a p-value of 0.01 may not be enough to ensure that the null hypothesis has less than a 50% posterior (or after-experiment) probability of being true, whereas a p-value of 0.10 may be enough to make the posterior probability of the null hypothesis be comfortably under 5% (for those interested in taking this discussion further, the final section of this post illustrates this in more detail and with examples).

Determining whether an intervention works

Fundamentally, p-values cannot be used by themselves as though they are objective and reliable ways to make prudent decisions about whether an intervention works. Statisticians emphasize the necessity for the results of individual studies to be interpreted in a broader context, one that involves both statistical judgment and judgment on the underlying scientific plausibility of the hypothesized effects. It is well known that when sample sizes are very large, such as in many observational studies involving tens or even hundreds of thousands of observations, p-values can be very low, even for effect sizes whose confidence intervals are relatively narrow yet do not include any effects that would be of practical importance. In evidence-based medicine we typically face the opposite challenge, where small sample sizes and/or relatively infrequent outcome events result in p-values greater than 0.05 and 95% confidence intervals that are ambiguous because they include the null value (as is implied by p>0.05), but with outcomes that would be very important clinically. Thankfully, in my own career, it does seem to me to have become better appreciated that simply describing studies as positive or negative depending on which side of 0.05 the p-value falls is an unreliable method for evaluating evidence.

p-values and meta-analysis

Another thing to keep in mind is that even when a majority of individual studies that address the same research question may have p-values above 0.05, the meta-analysis of those study results can still indicate a statistically and clinically significant effect. As an example I will use a 2017 Cochrane review of the use of probiotics for the prevention of Clostridioides difficile‐associated diarrhea (CDAD) in adults and children.3 The overwhelming majority of studies, 17 of 21, were supposedly “negative” in that they have confidence intervals that include the null value, but the overall pooled estimate reports a statistically significant and clinically important range of effects. Also note that the overwhelming majority of the studies report confidence intervals that are consistent with the confidence interval for the overall pooled estimate, when one considers the degree of overlap. See Figure 1 below.

Figure 1. Forest plot summarizing complete-case analyses from systematically reviewed clinical trials of probiotics for the prevention of Clostridium difficile‐associated diarrhea (CDAD) in adults and children. Although only 4 of the 31 individual trials had statistically significant results, the pooled estimate shows a statistically and clinically signficant reduction in risk of CDAD for the studied probiotics, without statistically significant heterogeneity among the individual trials’ relative risk estimates. Note that the confidence inferval for the pooled estimate is entirely contained by all but two of the confidence intervals from the individual trials and that even the confidence intervals from these two exceptions largely contain the pooled estimate.

Reprint of Figure 3 from Joshua Z Goldenberg, Christina Yap, Lyubov Lytvyn, et al’s “ Probiotics for the prevention of Clostridium difficile‐associated diarrhea in adults and children”, published December 12, 2017 in “Cochrane Database of Systematic Reviews” by John Wiley and Sons. Copyright by John Wiley and Sons. Reprinted under one-time use license from John Wiley.

Summary

In conclusion, p values are an important component of determining whether an outcome can be deemed to be statistically significant, but this depends on the question under investigation, and is only one part of a more complete analysis. When appraising evidence for whether an intervention works, it is important to keep in mind that if one relies only on statistical inferences from individual studies, one is vulnerable to making unreliable assessments that substantially misstate the plausibility that an intervention does (or does not) have an effect. Statistical analysis cannot replace context-specific scientific judgment; both are needed to make reliable evidence appraisals.

A deeper dive into how to use p-values to assess the probability that the null hypothesis is true

A common misinterpretation of p-values is that they measure the probability that the null hypothesis is true, given the sample data. As stated above, the p-value, by itself, cannot speak to this probability, but if one is willing to supply a judgment on the prior probability that the null hypothesis is true, one can use that and the p-value to get a lower bound on the probability of interest. The compelling figure that accompanies Regina Nuzzo’s terrific Nature article on p-values and their shortcomings nicely illustrates such results for six combinations involving three example prior probabilities and p-values of 0.05 and 0.01.4 Table 1 shows posterior probabilities for those and other input combinations.

 

Table 1. Plausible lower bound for the posterior (post-study) probability of the null hypothesis being true for a given prior (pre-study) probability and study p-value. Note that low p-values do not necessarily imply that the null hypothesis is unlikely to be true!
P-value
Prior Probability for Null 0.1000 0.0500 0.0100 0.0050 0.0010 0.0005 0.0001
5% 3.2% 2.1% 0.7% 0.4% 0.1% 0.1% 0.0%
10% 6.5% 4.3% 1.4% 0.8% 0.2% 0.1% 0.0%
25% 17.3% 12.0% 4.0% 2.3% 0.6% 0.3% 0.1%
50% 38.5% 28.9% 11.1% 6.7% 1.8% 1.0% 0.2%
75% 65.3% 55.0% 27.3% 17.8% 5.3% 3.0% 0.7%
90% 84.9% 78.6% 53.0% 39.3% 14.5% 8.5% 2.2%
95% 92.2% 88.6% 70.4% 57.8% 26.3% 16.4% 4.5%
Note: Calculations use the Bayes Factor – e p ln(p), which is shown to be a lower bound for the Bayes Factor among an appealing set of candidates, thus resulting in a plausible “lower bound” for the posterior probability that the null hypothesis is true. For example, when the prior probability is 50%, a p-value of 0.05 implies that the null hypothesis retains at least a 28.9% probability of being true.

 

The calculations used in that figure and in Table 1 for converting the two inputs, a prior probability for the null hypothesis and a p-value, into a posterior probability for the null hypothesis is simply an application of a much more general formula, one that has been known for over 200 years. This formula is simple to state and remember when expressed as odds. According to Bayes Theorem, Posteriors Odds equals Prior Odds multiplied by a term we call the Likelihood Ratio. The likelihood ratio is a ratio of two conditional probabilities for the observed data, with each computed under differing hypotheses.5 [Another very widely-used application of this general formula is when physicians use the results and the operational characteristics (e.g. the sensitivity and specificity) of clinical tests to inform medical diagnoses.6] The formula uses odds not in the way that they are defined in horse racing where long-shots have high odds, but in the way that statisticians define it, as the ratio of the probability of an event to the probability of the absence of that event. To a statistician, high odds mean high probability for the event. When the probability of an event P is greater than 0, the odds are P / (1 – P). For example, if the probability of an event is 0.75 (or 75%), then the odds would be 0.75 / ( 1 – 0.75 ) = 3. If one knows the odds O, then one can find the probability P, using the equation P = O / ( 1 + O ). For example, if the odds are 4:1, or 4, then the probability is 4/5 = 0.80, and if the odds are 1:4, or 0.25, then the probability is 0.25 / 1.25 = 0.20.

In order to use this long-known formula, one has to have a way to convert the p-value into a value to use for the “Likelihood Ratio” term, which in this context is called a Bayes Factor. For the Nature article, Nuzzo used a conversion proposed in the 1990s by Thomas Sellke, M. J. Bayarri, and James O. Berger and that they eventually published in the widely read American Statistician. That conversion has an appealing statistical motivation as the minimum possible value for the Bayesian Factor among a realistic set of candidates and thus it provides a useful plausible lower bound on the Bayesian Factor for p < 1 /e ≈ 0.368, where e is the Euler number, exp(1) ≈ 2.718,7 BayesFactor = – e * p * ln(p), where ln(p) is the natural logarithm of p. (For p ≥1/e, one can use BayesFactor=1.)  For example, p=0.04 would result in a BayesFactor of -exp(1) * 0.04 * ln( 0.04 ), approximately 0.35. So, if one specified that the prior probability for the null hypothesis is 50%, a toss-up, that corresponds to a prior odds of 1, then the BayesFactor for a p-value of 0.04 converts that prior odds of 1 into a posterior odds of 0.35, which corresponds to a posterior probability of 26% for the null hypothesis, substantially higher than 4%. In the analogous setting of diagnostic medicine, consider a test result that moves a physician’s suspicion for whether the patient has a disease from a pre-test value of 50% up to a post-test value of 74%. Such a result would be considered useful, but it would not be considered definitive, something for clinicians to keep in mind when they see that a study’s p-value was just under 0.05!

Another notable conversion of the p-value into a Bayes Factor was, as far as I can tell, first reported in a pioneering 1963 article in the social sciences literature that was authored by illustrious Bayesian statisticians. 8 That same Bayes Factor formula can be found clearly presented in the second5 of Steven N. Goodman’s excellent two-part set of Annals of Internal Medicine articles concerning fallacious use of p-values in evidence-based medicine. That conversion involves statistics that have an approximately normal distribution and is thus applicable to most statistics in the medical literature. That conversion reports the minimum theoretically possible value for the Bayes Factor, BayesFactormin = exp( – Z2 / 2 ), where Z is the number of standard errors the test statistic is from the null value.  (Z can be estimated in Microsoft Excel by using the formula Z = NORMSINV( p ) or Z = NORMSINV( p / 2 ). For example, a two-sided p-value of 0.04 corresponds to Z ≈ -2.054 and a BayesFactormin of exp( – (-2.054 * -2.054) / 2 ) ≈ 0.121. So, if the prior probability for the null hypothesis is 50%, a p-value of 0.04 would mean that, at the minimum, the null hypothesis has a posterior probability of 0.121 / 1.21 = 10.8% of being true, substantively higher than the 4% probability that the popular misinterpretation of p-values would yield. When that factor was introduced in the 1963 article, it was noted by the authors as not being one that would be realistically attained by any study, as it would involve an impossibly lucky guess for the best possible prior probability to use, but it is still useful mathematically because it results in a theoretical minimum for the posterior probability that the null hypothesis is true. In mathematics, we routinely use well-chose impractical scenarios to define the limits for what is practically possible. Given that decisionmakers want to know how probable the null hypothesis remains in light of the study data, it is helpful to know the minimum possible theoretical value for it. Table 2 shows these posterior probabilities for the same inputs used above in Table 1. Notably, a p-value of 0.05 may not even be enough to make the null hypothesis less likely than not!

P-value
Prior Probability for Null 0.1000 0.0500 0.0100 0.0050 0.0010 0.0005 0.0001
5% 1.3% 0.8% 0.2% 0.1% 0.0% 0.0% 0.0%
10% 2.8% 1.6% 0.4% 0.2% 0.0% 0.0% 0.0%
25% 7.9% 4.7% 1.2% 0.6% 0.1% 0.1% 0.0%
50% 20.5% 12.8% 3.5% 1.9% 0.4% 0.2% 0.1%
75% 43.7% 30.5% 9.8% 5.5% 1.3% 0.7% 0.2%
90% 69.9% 56.9% 24.6% 14.9% 3.9% 2.1% 0.5%
95% 83.1% 73.6% 40.8% 27.0% 7.8% 4.3% 1.0%
Note: For 2-sided p-values based on approximately normally distributed test statistics, using the mathematically lowest theoretically possible Bayesian Factor,5,8 thus ensuring the lowest possible value for the posterior probability for the null hypothesis. Although these lower bonds would never be attained in any realistic application, this table is useful in showing the smallest null hypothesis probability that is even theoretically possible. Note that even with a p-value of 0.05, the posterior probability for the null hypothesis may still be high.

References

  1. Wasserstein RL, Lazar NA. The ASA Statement on p-Values: Context, Process, and Purpose. The American Statistician. 2016;70(2):129-133.
  2. Goodman SN. Toward evidence-based medical statistics. 1: The P value fallacy. Annals of Internal Medicine. 1999;130(12):995-1004.
  3. Goldenberg JZ, Yap C, Lytvyn L, et al. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev. 2017;12:CD006095.
  4. Nuzzo R. Statistical Errors. Nature. 2014;506(7487):150-152.
  5. Goodman SN. Toward evidence-based medical statistics. 2: The Bayes factor. Annals of Internal Medicine. 1999;130(12):1005-1013.
  6. Deeks JJ, Altman DG. Diagnostic tests 4: likelihood ratios. Bmj. 2004;329(7458):168-169.
  7. Sellke T, Bayarri MJ, Berger JO. Calibration of p values for testing precise null hypotheses. Am Stat. 2001;55(1):62-71.
  8. Edwards W, Lindman H, Savage LJ. Bayesian Statistical-Inference for Psychological-Research. Psychol Rev. 1963;70(3):193-242.

Bacterial genes lead researchers to discover a new way that lactic acid bacteria can make energy and thrive in their environments

Lactic acid bacteria are an important group of bacteria associated with the human microbiome. Notably, they are also responsible for creating fermented foods such as sauerkraut, yogurt, and kefir. In the past two decades, culture-independent techniques have allowed scientists to sequence the genomes of these bacteria and discover more about their capabilities.

Researchers studying a type of lactic acid bacteria called Lactiplantibacillus plantarum found something unexpected: they contained genes for making energy in a way that had not been previously documented. Generally, living organisms obtain energy from their surroundings either by fermentation or respiration. L. plantarum have long been understood to obtain energy using fermentation, but the new genetic analysis found they had additional genes that were suited to respiration. Could they be using both fermentation and respiration?

ISAPP board member Prof. Maria Marco is a leading expert on lactic acid bacteria and their role in fermented foods and in human health. In her lab at University of California Davis, she decided to investigate why L. plantarum had genes equipping it for respiration. Her group recently published findings that show a new type of “hybrid” metabolism used by these lactobacilli.

Here is a Q&A with Prof. Marco about these exciting new findings.

What indicated to you that some of the genes in L. plantarum didn’t ‘belong’?

Organisms that use respiration normally require an external molecule that can accept electrons, such as oxygen. Interestingly, some microorganisms can also use solid electron acceptors located outside the cell, such as iron. This ability, called extracellular electron transfer, has been linked to proteins encoded by specific genes. L. plantarum had these genes, even though this species is known to use fermentation. We first learned about their potential function from Dr. Sam Light, now at the University of Chicago. Sam discovered a related pathway in the foodborne pathogen Listeria monocytogenes. Sam came across our research on L. plantarum because we previously published a paper showing that a couple of genes in this pathway are switched on in the mammalian digestive tract. We wondered what the proteins encoded by these genes were doing.

How did you set out to investigate the metabolism of these bacteria?

We investigated this hybrid metabolism in a variety of ways. Using genetic and biochemical approaches we studied the extent to which L. plantarum and other lactic acid bacteria are able to use terminal electron acceptors like iron. Our collaborators at Lawrence Berkeley National Lab and Rice University contributed vital expertise with their electrochemistry experiments, including making fermented kale juice in a bioelectrochemical reactor.

What did you find out?

We discovered a previously unknown method of energy metabolism in Lactiplantibacillus plantarum. This hybrid strategy blends features of respiration (a high NAD+/NADH ratio and use of a respiratory protein) with features of fermentation (use of endogenous electron acceptors and substrate-level phosphorylation).

We verified that this hybrid metabolism happens in different laboratory media and in kale juice fermentations. We also found that, in the complex nutritive environment of a kale juice fermentation, this hybrid metabolism increases the rate and extent of fermentation and increases acidification. Within the ecological context of the fermented food, this could give L. plantarum a fitness advantage in outcompeting other microorganisms. This could potentially be used to change the flavor and texture of fermented foods.

This discovery gives us a new understanding of the physiology and ecology of lactic acid bacteria.

Are there any indications about whether this energy-making strategy is shared by other lactic acid bacteria?

Some other fermentative lactic acid bacteria also contain the same genetic pathway. It is likely that we are just at the tip of the iceberg learning about the extent of this hybrid metabolism in lactobacilli and related bacteria.

Your finding means there is electron transfer during lactic acid bacteria metabolism. What does this add to previous knowledge about bacterially-produced ‘electricity’?

Certain soil and aquatic microbes have been the focus of research on bacterially-produced electricity. We found that by giving L. plantarum the right nutritive environment, it can produce current to the same level as some of those microbes. We believe there is potential to apply the findings from our studies to better inform food fermentation processes and to guide fermentations to generate new or improved products. Because strains of L. plantarum and related bacteria are also used as probiotics, this information may also be useful for understanding their molecular mechanisms of action in the human digestive tract.

How might this knowledge be applied in practice?

Our findings can lead to new technologies which use lactic acid bacteria to produce healthier and tastier fermented foods and beverages. Because this hybrid metabolism leads to efficient fermentation and a larger yield, it could also help minimize food waste. We plan to continue studying the diversity, expression, and regulation of this hybrid metabolism in the environments in which these bacteria are found.

ISAPP awards the Glenn Gibson Early Career Research Prize to two diet and gut health researchers

The ISAPP board of directors is pleased to announce that the 2022 Glenn Gibson Early Career Research Prize has been awarded to two promising researchers in the field of probiotics, prebiotics and related substances.

Dr. Martin Laursen, Senior Researcher at the National Food Institute, Technical University of Denmark, has demonstrated excellence in his work on the impact of probiotics and human milk oligosaccharides on infant gut microbiota and health. Dr. Eirini Dimidi, Lecturer at King’s College in London, UK, has carried out meaningful work on probiotics, prebiotics, and fermented foods and their impact on constipation.

The award criteria stipulated that the researchers must be fewer than five years from their terminal degree, and their scope of research must be basic or clinical research disciplines in the fields of probiotics, prebiotics, synbiotics, postbiotics or fermented foods. In addition, the researchers were required to show evidence of a significant research finding and its publication(s), new ideas that advance the field, and / or evidence of impact through citizenship, general outreach, social media or other means.

The prize committee chose the two recipients from among dozens of applicants and identified each of them as having made important contributions to the field at this early stage in their scientific careers. Each winner will receive a cash prize and an opportunity to speak at the ISAPP annual meeting, to be held in Spain in June, 2022.

Stay tuned to learn more about these rising star researchers!

See here for details about the 2022 Glenn Gibson Early Career Research Prize

Do fermented foods contain probiotics?

By Prof. Maria Marco, PhD, Department of Food Science & Technology, University of California, Davis

We frequently hear that “fermented foods are rich in beneficial probiotics.” But is this actually true? Do fermented foods contain probiotics?

The quick answer to this question is no – fermented foods are generally not sources of probiotics. Despite the popular assertion to the contrary, very few fermented foods contain microbes that fit the criteria to be called probiotic. But this fact does not mean that fermented foods are bad for you. To uphold the intent of the word probiotic and to explain how fermented foods actually are healthy, we need to find better ways to describe the benefits of fermented foods.

Probiotics are living microorganisms, that when administered in adequate amounts, confer a health benefit on the host (Hill et al 2014 Nat Rev Gastroenterol Hepatol). This current definition reflects minor updates to a definition offered by an expert consultation of scientists in 2001 convened by the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization. Evident from the definition, a microbial strain is not a probiotic unless a health benefit has been found with its use. At a minimum, the strain should be proven to be beneficial in at least one randomized controlled trial (RCT). Probiotics must also be defined at the strain level through genome sequencing (a strain is a single genotype of a species).

Fermented foods, on the other hand, have no requirement to improve health. Fermented foods are foods and beverages made through desired microbial growth and enzymatic conversion of food components. This definition was recently formulated by an ISAPP consensus panel of scientific experts to affirm the common properties of all foods of this type and to differentiate foods that may look or taste similar but are not made using microbes (Marco et al 2021 Nat Rev Gastroenterol Hepatol). Fermented foods encompass an expansive variety of foods made from animal and plant sourced ingredients and produced from all types of microbial metabolism. The desired characteristics of these foods are frequently how they look, smell, and taste. There no expectation in this definition that fermented foods alter health in any way.

There is also no requirement for fermented foods contain living microbes at the time they are ingested. Foods such as bread, chocolate, and beer are fermented but then are baked, roasted, and/or filtered. This means those fermented foods cannot be probiotic.

Some fermented foods, such as kimchi and kombucha, are typically eaten with living microbes present. However, the microbes in those foods usually do not meet the criteria to be called probiotic. Whether the fermented food was made at home or purchased from the supermarket, studies investigating whether the microbes in those fermented foods are specifically responsible for a health benefit remain to be done. Those foods also do not contain microbes defined to the strain level, nor is the number of living microbes typically known. An exception to this is if specific strains previously shown to provide a health benefit in one or more RCT are intentionally used in the production of the food and remain viable at expected numbers over the shelf-life of that fermented food product. An example of this would be a commercial fermented yogurt that has an added probiotic strain remaining viable at the time of consumption, beyond the strains that carried out the fermentation.

Despite these distinctions between probiotics an fermented foods, the probiotics term has pervaded common lexicon to mean “beneficial microbes”. In contrast to pathogenic or harmful microbes, beneficial microbes are those that are understood to help rather than hurt bodily functions. However, just as we do not assume that all pathogens cause the same disease or result in the same severity of symptoms, we should also not expect that beneficial microbes all serve the same purpose. By analogy, automobiles are useful vehicles which help us to get from place to place. We do not expect that all automobiles perform like those used for Formula 1 racing. Microbes are needed to make fermented foods and may be beneficial for us, but we should not assume that those drive health benefits like established probiotic strains.

What are the consequences of calling fermented foods probiotic when they include undefined numbers of living microbes for which strain identities are not known? One can suppose that there is no harm in labeling or describing those products as “probiotic” or “containing probiotics”. However, by doing so, confusion and misunderstanding is created and too often, spread by journalists, nutritionists, scientists, and medical professionals. For example, news articles in reputable sources have written that foods like kefir, kimchi, sauerkraut made from beets or cabbage, pickles, cottage cheese, olives, bread and chocolate are rich in probiotics. As misuse perpetuates, what becomes of bona fide probiotics shown with rigorous study to benefit health, such as reducing the incidence and duration of diarrhea or respiratory infections? It becomes difficult to know which strains have scientific proof of benefit. Just as there are laws for standards of food identity, we should strive to do the same when describing microbes in fermented foods.

Avoiding the term probiotic when describing fermented foods should not stop us from espousing the myriad of positive attributes of those foods. Besides their favorable sensory qualities, fermented foods are frequently safer and better tolerated in the digestive tract than the foods they are made from. During the production of fermented foods, microbes remove or reduce toxins in the ingredients and produce bioactive compounds that persist long after the microbes that make them are gone.

Even though the living microbes in fermented foods may not rise to the standard of a probiotic, they may provide health benefits. We just don’t have the studies to prove that they do. With more study, we may find that viable microbes in fermented foods work similarly to probiotics in the digestive tract through shared mechanisms. This is already known for yogurts. Yogurt cultures share the ability to deliver lactase to the intestine, thereby improving tolerance of lactose by intolerant individuals. Clinical and epidemiological studies performed on fermented foods already suggest an association between them and different health benefits but as we recently explained (Marco et al 2021 J Nutrition), more work is needed in order to understand if and what benefits these microbes provide.

For now, we should simply continue enjoying the making and eating of fermented foods and reserve the term probiotics for those specific microbial strains which have been shown to improve our health. Marketers should resist labeling products as containing probiotics if their products do not meet the criteria for a probiotic. Indeed, the descriptor “live and active cultures” more accurately reflects the microbial composition of many fermented foods, and should be used until controlled human trials demonstrating health benefits are conducted.

 

Additional resources:

How are probiotic foods and fermented foods different? ISAPP infographic.

Fermented foods. ISAPP infographic.

What are fermented foods? ISAPP video.

Are fermented foods probiotics? Webinar by Mary Ellen Sanders, PhD.

 

Pasteurized Akkermansia muciniphila as a postbiotic: EFSA approval and beyond

By Prof. Seppo Salminen, University of Turku, Finland

Earlier this year, the European Food Safety Authority (EFSA) delivered an opinion that heat-treated Akkermansia muciniphila is safe for use as a novel food in the European Union. EFSA described A. muciniphila as a “well‐characterised non‐toxin producing, avirulent microorganism that has been reported as part of normal gut microbiota” and determined based on a literature review that its safety is adequate for use as a food supplement or in foods for special medical purposes, at a specified maximum dose.

ISAPP connected with three individuals from A-Mansia Biotech, the company that initiated the EFSA request: Prof. Willem M. de Vos and Prof. Patrice D. Cani, as well as the company CEO Michael Oredsson. They jointly answered some questions on their EFSA success and plans for the future.

Originally, what led you to test whether the pasteurized form of the live microbe might be able to confer a health benefit?

We first noticed that killing Akkermansia by using autoclaving (121°C 20°C) completely abolished the beneficial effects of Akkermansia. However, we wanted to test whether a milder procedure (i.e. pasteurization) could keep some structures of the outer membrane of Akkermansia intact and therefore still able to interact with the host. We knew that several other classical probiotics (types of lactobacilli) partly retained their effects after pasteurization. Our surprise was to see that pasteurization successfully maintained the effects of Akkermansia compared to the live form, but even increased its efficacy.

Pasteurised Akkermansia has now been extensively studied for safety and health effects. Does this make it the first real postbiotic, as defined by ISAPP?

If we are accepting the ISAPP definition proposed in 2021, we can answer yes to this question. Prof. Cani in his scientific capacity believes indeed that the product (pasteurized Akkermansia) is unique and can fall under this definition. Whether A-Mansia will be positioning the pasteurized Akkermansia as a postbiotic according to that definition is still to be discussed.

Pasteurised Akkermansia has been demonstrated to control gut barrier and reduce inflammation associated with fat storage and obesity – will we see a product that helps in weight loss/control?

Akkermansia is clearly playing a major role by tackling the gut barrier dysfunction which is the root cause of the different metabolic problems mentioned here (i.e., inflammation, fat storage, liver/fat tissue inflammation) and they are all connected to better energy expenditure/oxidation when a lower inflammation/insulin resistance is observed. Therefore, pasteurized Akkermansia should help to maintain a healthy weight and abdominal fat. A product focusing on a better weight management is currently under development at A-Mansia.

Is the next step to apply for an EU health claim?

All the current human investigations and studies at our company are aiming at fulfilling future EU health claims.

It took two years to get the acceptance for the safety of inanimate pasteurised Akkermansia – what do you think of this timeframe for safety assessment?

This is perfectly in line with what the EFSA was expecting, although it was a few months delayed with the COVID-19 crisis. The assessment was very clear, smooth and well managed by the EFSA.

In general, what do you think the future holds for postbiotics as food ingredients?

We are entering into a new era, first with next-generation beneficial bacteria, and Akkermansia as one of the most studied (if not the most studied). The pasteurized form is so active, stable, and easy to use that the postbiotic era, as led by this example, is a novel and innovative manner of targeting the microbiome for improving/maintaining health.

 

As the science on health benefits for similar postbiotic substances continues to advance, we may see more ingredients qualifying as true postbiotics. More products are likely to follow a similar path, considering the practical advantages of delivering non-living substances to consumers.

 

ISAPP’s 2021 year in review

By Mary Ellen Sanders, PhD, ISAPP Executive Science Officer

The upcoming year-end naturally leads us to reflect about what has transpired over the past 12 months. From my perspective working with ISAPP, I witnessed ISAPP board members and the broader ISAPP community working creatively and diligently to find solutions to scientific challenges in probiotics, prebiotics and related fields. Let’s look back together at some of the key developments of 2021.

ISAPP published outcomes from two consensus panels this year, one on fermented foods and one on postbiotics. The popularity of these articles astounds me, with 49K and 29K accesses respectively, as of this writing. I think this reflects recognition on the part of the scientific community of the value – for all stakeholders – of concise, well-considered scientific definitions of terms that we deal with on a daily basis. If we can all agree on what we mean when we use a term, confusion is abated and progress is facilitated. The postbiotics definition was greeted with some resistance, however, and it will remain to be seen how this is resolved. But I think ISAPP’s response about this objection makes it clear that productive definitions are difficult to generate. Even if the field ultimately embraces another definition, it is heartening to engage in scientific debate about ideas and try to find alignment.

Keeping with the idea of postbiotics, a noteworthy development this year was the opinion from the European Food Safety Authority that the postbiotic made from heat-treated Akkermansia muciniphila is safe for use as a novel food in the EU. Undoubtedly, this development is a bellwether for likely future developments in this emerging area as some technological advantages to postbiotics will make these substances an attractive alternative to probiotics IF the scientific evidence for health benefits becomes available.

Recognizing the existing need for translational information for clinicians, ISAPP developed a continuing education course for dietitians. Published in March, it has currently reached close to 6000 dietitians. This course focused on probiotics, prebiotics and fermented foods: what they and how they might be applied in dietetic practice. It is a freely available, self-study course and completion provides two continuing education credits for dietitians.

On a sad note, in March of this year, ISAPP suffered the loss of Prof. Todd Klaenhammer. Todd was a founding ISAPP board member, and directed many of our activities over the course of his 18-year term on the board. He was also my dear friend and major advisor for my graduate degrees at NC State many years ago.  As one former collaborator put it, “I was not prepared to finish enjoying his friendship and mentorship.” See here for a tribute to Prof. Klaenhammer on the ISAPP blog: In Memoriam: Todd Klaenhammer.

So where will 2022 lead ISAPP? The organization has now published five consensus definitions: probiotics, prebiotics, synbiotics, postbiotics and fermented foods – extending its purview beyond where it started, with probiotics and prebiotics. Through the year ahead, ISAPP is committed to providing science-based information on the whole ‘biotics’ family of substances as well as fermented foods. Our Students and Fellows Association is growing, supported by the opportunity for young scientists to compete for the Glenn Gibson Early Career Researcher Prize. We continue to see our industry membership expand. Through our new Instagram account and other online platforms, our overall community is increasing. The ISAPP board of directors continues to evolve as well, with several long-term members leaving the board to make room for younger leaders in the field who will direct the future of the organization. This applies to me as well, as I have made the difficult decision to depart ISAPP in June of 2023. Thus, hiring a new executive director/executive science officer is an important priority for ISAPP in 2022. My 20 years with ISAPP have seen the organization evolve tremendously, through the hard work of incredible board members as well as many external contributors. We will strive to make 2022 – our 20th anniversary – ISAPP’s best year yet.

ISAPP board members give a scientific overview of synbiotics in webinar

Many kinds of products are labeled as synbiotics – but how do they differ from each other? And do they all meet the scientific criteria for synbiotic ingredients?

To demystify the science of synbiotics – including ISAPP’s definition published in 2020 – ISAPP is holding a free webinar: Synbiotics: Definitions, Characterization, and Assessment. Two ISAPP board members, Profs. Bob Hutkins and Kelly Swanson, present on the implications of the synbiotic definition for science and industry. They clarify the difference between ‘complementary’ and ‘synergistic’ synbiotics and cover the basics of meeting the criteria for synbiotic efficacy and safety. One challenge is learning when a synbiotic is required to have demonstrated both selective utilization of the microbiota in the same study that measures the health outcome. A Q&A is scheduled for the last 20 minutes of the webinar.

This webinar is for scientists, members of the public, and media who want a scientific overview on synbiotics as they appear in more and more consumer products.

The live webinar was broadcast on Friday, January 28th, 2022, from 10:00 am – 11:10 New York (Eastern) time.

Find the webinar recording here.

Research on the microbiome and health benefits of fermented foods – a 40 year perspective

By Prof. Bob Hutkins, PhD, University of Nebraska Lincoln, USA

Many ISAPPers remember when fermented foods attracted hardly any serious attention from scientists outside the field. Certainly, most clinicians and health professionals gave little notice to fermented foods. In the decades before there were artisan bakeries and microbreweries proliferating on Main Street USA, even consumers did not seem very interested in fermented foods.

When I began my graduate program at the University of Minnesota in 1980, I was very interested in microbiology, but I did not know a lot about fermented foods. Accordingly, I was offered two possible research projects. One involved growing flasks of Staphylococcus aureus, concentrating the enterotoxins, feeding that material to lab animals, and then waiting for the emetic response.

My other option was to study how the yogurt bacterium, Streptococcus thermophilus, metabolized lactose in milk. This was the easiest career choice ever, and the rest, as they say, is history.

Indeed, that lab at Minnesota was one of only a handful in North America that conducted research on the physiology, ecology, and genetics of microbes important in fermented foods. Of the few labs in North America delving into fermented foods, most emphasized dairy fermentations, although some studied vegetable, meat, beer, wine, and bread fermentations. Globally, labs in Europe, Japan, Korea, Australia, and New Zealand were more engaged in fermented foods research than we were in North America, but overall, the field did not draw high numbers of interested researchers or students.

That’s not to say there weren’t exciting and important research discoveries occurring. Most research at that time was focused on the relevant functional properties of the microbes. This included carbohydrate and protein metabolism, flavor and texture development, tolerance to acid and salt, bacteriocin production, and bacteriophage resistance. Despite their importance, even fewer labs studied yeasts and molds, and the focus was on lactic acid bacteria.

Other researchers were more interested in the health benefits of fermented foods. Again, yogurt and other cultured dairy foods attracted the most interest. According to PubMed, there were about 70 randomized clinical trials (RCTs) with yogurt as the intervention between 1981 and 2001. Over the next 20 years, there were more than 400 yogurt RCTs.

Fast forward a generation or two to 2021, and now fermented foods and beverages are all the rage. Certainly, having the molecular tools to sequence genomes and interrogate entire microbiomes of these foods has contributed to this new-found interest. Scanning the recent literature, there are dozens of published papers on microbiomes (and metabolomes) of dozens of fermented foods, including kombucha (and their associated symbiotic cultures of bacteria and yeast, known as SCOBYs), kefir, kimchi, beer (and barrels), cheese (and cheese rinds), wine, vinegar, miso and soy sauce, and dry fermented sausage.

It’s not just fermentation researchers who are interested in fermented foods. For ecologists and systems biologists, fermented foods serve as model systems to understand succession and community dynamics and how different groups of bacteria, yeast, and mold compete for resources.

Moreover, consumers can benefit when companies that manufacture fermented foods take advantage of these tools. The data obtained from fermented food microbiota analyses can help to correlate microbiome composition to quality attributes or identify potential sources of contamination.

Importantly, it is also now possible to screen microbiomes of fermented foods for gene clusters that encode potential health traits. Indeed, in addition to microbiome analyses of fermented foods, assessing their health benefits is now driving much of the research wave.

As mentioned above, more than 400 yogurt RCTs were published in the past two decades, but alas, there were far fewer RCTs reported for other fermented foods. This situation, however, is already changing. The widely reported fiber and fermented foods clinical trial led by Stanford researchers was published in Cell earlier this year and showed both microbiome and immune effects. Other RCTs are now in various stages, according to clinicaltrials.gov.

Twenty years ago, when ISAPP was formed, I suspect few of us would have imagined that the science of fermented foods would be an ISAPP priority. If you need proof that it is, look no further than the 2021 consensus paper on fermented foods. It remains one of the most highly viewed papers published by Nature Reviews Gastroenterology and Hepatology.

Further evidence of the broad interest in fermented foods was the recently held inaugural meeting of The Fermentation Association. Participants included members of the fermented foods industry, culture suppliers, nutritionists, chefs, food writers, journalists, retailers, scientists and researchers.

Several ISAPP board members also presented seminars, including this one who remains very happy to have made a career of studying fermented foods rather than the emetic response of microbial toxins.

Lactobacilli dominate the vagina in Belgian women

By Prof. Sarah Lebeer, Research Professor in Microbiology and Molecular Biology, Department of Bioscience Engineering, University of Antwerp, Belgium

A little over a year ago, I wrote an ISAPP blog post about the setup of our Isala citizen science project on women’s health. Now, I can proudly say that we have the first results. Last year, more than 3300 women sent vaginal samples back to our lab, not only from the big cities but also from the smallest villages all over Flanders, Belgium (Figure 1). While Prof. Jack Ravel and many other colleagues have already done pioneering work in the US (e.g., Ravel et al. PNAS & Valencia study), Estonia and Africa, the vaginal microbiome of healthy women was less well mapped in the region where we live in Western Europe (Flanders, Belgium).

Figure 1: Map of Flanders (Belgium) showing regions from which the Isala participants sent their samples, with a gradient for the number of participants.

Last year, we managed to inspire women from a wide age range to donate two vaginal self-sampled swabs: the youngest participants were 18 years old, while a woman of 98 years old even participated. Each participant of Isala showed a unique vaginal microbiome (Figure 2).

Figure 2. Bar chart showing that each Isala participant had a unique vaginal microbiome composition, but also that lots of parallels could be drawn based on the most dominant bacterium.

Through various analyses, we were able to find parallels between the vaginal profiles of the Isala participants. We decided to divide the women in eight groups based on their most dominant microbe. Lactobacillus crispatus was found in 43% of all Isala women as most dominant bacterium, Lactobacillus iners in 28%, Lactobacillus jensenii in 4%, Lactobacillus gasseri in 3%, Gardnerella vaginalis in 12%, Prevotella in 6%, Bifidobacterium in 2% and Streptococcus in 2% of all Isala participants (Figure 3). Last June 2021, all women received this information, with a nice drawing for each bacterium and some interesting facts about these bacteria, as well as the relative abundance of this top 8. (See here.)

Figure 3. Chart showing the proportion of women participating in the Isala project that have a vaginal microbiota dominated by different bacterial genera or species.

Our work has only just begun. My team (see photo below) is now analyzing all the metadata collected via the detailed questionnaires and associating them with these microbiome profiles. The impact of the menstrual cycle, hormonal fluctuations, diet, smoking, sexual activity and other relevant factors is currently being explored. Hopefully, this will allow us to better understand for the vaginal tract what a ‘healthy microbiome’ really is and what action women can take to obtain or preserve  a ‘healthy’ or resilient microbiome. This is challenging to define with our current state of knowledge, but one characteristic of health of the microbiome may be its resilience. At the next annual ISAPP meeting, Karen Scott and I will co-chair a discussion group on ‘What do we really know about the microbiome and health?’. Now, I think it is fair to say that, compared to the gut, associations between specific microbiome members, such as lactobacilli, and health are quite strong for the vaginal tract. These lactobacilli form a protective barrier, are able to keep pathogens out, and prevent overt inflammation, so we could define lactobacilli-dominated vaginal communities as being resilient to many infections and disorders and thus probably ‘healthy’.

However, there is still much we do not know. Can women make certain changes in their lifestyle, diet, anticonception, underwear material etc. to promote lactobacilli such as L. crispatus in their vagina? What are the consequences of normal events in live such as pregnancy and menopause on these lactobacilli? Is a vaginal community with less lactobacilli always less healthy or resilient? On this page, you can get an overview of the different aspects we want to investigate. We hope to submit the first big Isala manuscript by the end of this year and will inform you as soon as possible about the results.

Lebeer lab, University of Antwerp

Scientists looking at a bottle of probiotic supplements.

Current issues in probiotic quality: An update for industry

By Dr. Mary Ellen Sanders, ISAPP, Dr. Kit Goldman, USP, Dr. Amy Roe, P&G, Dr. Christina Vegge, Dr. Jean Schoeni, Eurofins

With probiotic dietary supplement use growing globally and an increasing array of products on the market, probiotic quality is an issue of perpetual relevance to industry. Best practices for producing high-quality probiotics change frequently, making it important for companies to stay informed.

ISAPP convened a webinar on this topic, available to ISAPP members only. The webinar took place November 16, 2021, and was hosted by Executive Science Officer, Dr. Mary Ellen Sanders. Speakers focused on the activities of the United States Pharmacopoeia (USP), a non-profit organization based in the US and operating globally, which for the past 200 years has worked to improve public health through development of quality standards for medicines, dietary supplements and foods. In 2017 USP formed an Expert Panel on probiotics.

Dr. Kit Goldman, Sr Director, Dietary Supplements and Herbal Medicines, USP, spoke about the origin of USP and the USP activities related to probiotic quality. USPs expert volunteers have determined the necessary parameters for probiotic quality standards, which include tests for identification, assay/enumeration and contaminants, and have created standards for a number of probiotic species/strains. In the course of doing so, the Probiotics Expert Panel identified specific areas where more information was needed to fully understand issues related to probiotic quality. This led to the formation of sub-teams to consider aspects of probiotic identification, enumeration and safety.

Dr. Amy Roe, Principal Scientist at P&G, spoke on appropriate regulatory requirements for probiotic safety. Currently, there is no global harmonization on the requirements for establishing probiotic safety for use in foods and supplements. Although ‘history of safe use’ has been central to safety assessments for many current probiotic species, probiotic manufacturers are increasingly seeking to use new strains, species, and next-generation probiotics; justification of safety based on a significant history of use may be challenged. USP and other stakeholders are looking to develop best practices guidelines for assessing the quality and safety of probiotics. A current initiative of the USP seeks to provide expert advice specific to safety considerations for probiotics through reviewing global regulatory guidelines, evaluating appropriateness of traditional animal toxicology studies for studying the safety of probiotics, highlighting the importance of proper manufacturing practices with regard to final product safety, and outlining of essential parameters of a comprehensive safety assessment for a probiotic.

Dr. Jean Schoeni, Fellow at Eurofins, spoke on comparing probiotic enumeration methods. One challenge faced by the USP Probiotics Expert Panel is how to compare the increasing number of probiotic enumeration methods appearing in monograph submissions. A sub-team of the panel developed a solution that combines APLM (Analytical Procedures Lifecycle Management – a streamlined approach for determining the method’s fitness for intended use) with TI (tolerance interval) calculations. Schoeni encouraged companies to adopt this solution, highlighting tools that have been provided to the probiotics industry through publication of the sub-team’s work.

Dr. Christina Vegge spoke on quantification of multi-strain blends. For probiotic products comprising multiple strains, the viable numbers of each strain in these products would ideally be quantified. However, reliance on plate count methods creates analytical challenges regardless of whether the quantification of viable numbers of each strain in the blend is conducted prior to or after blending. Further challenges arise when addressing the reductions in potency over shelf life of the product. For multi-strain products, plate count procedures are insufficient—and currently no official guideline or general best practice exists to resolve this situation. Therefore, the USP Probiotics Expert Panel wants to conduct an explorative study to examine non-culture based technologies to quantify the viable composition of multi-strain blends.

A recording of this webinar is available for ISAPP industry members only. Please see here and email info@nullisappscience.org for the password to access this page.

Publications (open access) from USP Probiotics Expert Panel:

Jackson et al. Improving End-User Trust in the Quality of Commercial Probiotic Products. Front Microbiol. 2019 Apr 17;10:739.  doi: 10.3389/fmicb.2019.00739.

Weitzel MLJ, et al. Improving and Comparing Probiotic Plate Count Methods by Analytical Procedure Lifecycle Management. Front Microbiol. 2021 Jul 12;12: 693066. doi: 10.3389/fmicb.2021.693066.

 

 

The USDA Global Branded Food Products Database is Now Accepting Data on Live Microbes – Call for Data Submission

Marie E. Latulippe, MS, RDN, Director of Science Programs and Brienna Larrick, PhD, PMP Scientific Program Manager, Institute for the Advancement of Food and Nutrition Sciences (IAFNS), Washington DC

As noted by Marco et al. (2020), evidence from observational studies and randomized controlled trials suggests that the consumption of safe, live microbes can support health. However, more data are needed to accept or refute this hypothesis, and to develop a full understanding of population exposure. As of October 2021, the USDA Global Branded Food Products Database is accepting information on live microbes in foods and beverages. With participation from manufacturers, this initiative will eventually enhance our understanding of the numbers of live microbes that populations consume from food.

The USDA Global Branded Food Products Database contains ingredient and nutrition composition data on over 368,000 branded and private label (i.e., store brand) foods and beverages. This information is provided voluntarily by the food industry. The impact of industry providing these data is substantial; it means these data are available to inform agricultural and food policy decisions by federal agencies, and to support research and regulatory queries by the public and private sectors. By supplying information on live microbes in foods, the food industry can provide researchers with useful data on quantities of live microbes in foods and enable them to link these data to associated health outcomes. Ultimately, this could contribute to determining if a recommended intake level for the consumption of safe, live microbes from foods (e.g., yogurts) is supported by evidence.

The food industry is encouraged to contribute to this initiative by providing the following data on the food and beverage products they produce:

  • Quantity (range) of live microbes
  • Method of analysis used to determine quantity of live microbes
  • Type(s) of live microbes present in the product

Data on live microbes can be submitted via 1WorldSync, a Global Data Synchronization Network (GDSN) data pool provider. For more information, including guidance for submitting data and technical support, visit here.

The partners in this public-private partnership are USDA, IAFNS, GS1 US, 1WorldSync, NielsenIQ Label Insight, and the University of Maryland. For more information on the USDA Global Branded Food Products Database, visit here.

ISAPP and IAFNS collaborate on a project focused on live dietary microbes through the IAFNS gut microbiome committee. Mary Ellen Sanders, Executive Science Officer for ISAPP, represents ISAPP on this committee.

Related links:

New ISAPP-led paper calls for investigation of evidence for links between live dietary microbes and health

Gut Microbiome Webinar Series sponsored by IAFNS

 

Should the concept of postbiotics make us see probiotics from a new perspective?

By Dr. Gabriel Vinderola, PhD,  Associate Professor of Microbiology at the Faculty of Chemical Engineering from the National University of Litoral and Principal Researcher from CONICET at Dairy Products Institute (CONICET-UNL), Santa Fe, Argentina

In early May 2021 an ISAPP consensus panel  defined postbiotics as “a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host“. The fact that non-viable microbes may still deliver health benefits is not new for the scientific community and was reviewed more than 20 years ago. More recent studies demonstrating health effects of non-viable microbes spurred interest in this topic, leading ISAPP to carefully consider the emerging use of the term ‘postbiotic’ and provide a clear, modern, concise definition.

Postbiotics can be contrasted with probiotics: live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. In practice, probiotics  have likely always coexisted with inanimate microbes, as live microbes will die at all phases of production of a product. In the past, it seems the presence of inanimate microbes as part of probiotic products was not really considered. We all knew they were there, but made a default assumption that they had limited significance. As we consider postbiotics, though, we should perhaps look again at how to address the inanimate components of probiotic products.

The presence of inanimate cells in probiotic preparations: from lab to product

A loop of a fresh, overnight, live culture of a probiotic strain may still contain non-viable cells (Fig. 1). During the biomass production of a probiotic culture, an abundance of live cells can be observed in the exponential growth phase, but as the culture enters the stationary phase, a significant increase in the proportion of non-viable cells occurs (Fig. 2). Yet the culture may display a satisfactory high number of viable cells as verified by traditional plating on agar media. Some years ago, it was reported that a fresh culture of a lactobacilli strain may display a live/dead cells ratio of ca. 100/1. However, this ratio may change to 1:1 after freeze-drying, as studied using flow cytometry, a technology that allows the quantification of both live and dead cells in a culture-independent way. Therefore, a recently freeze-dried culture of a probiotic strain may contain 1010 log CFU/g of live cells, but also the same amount of non-viable cells.

Food supplements may have a shelf life between 12 and 24 months at room temperature and over this time, a proportion of cells will likely lose viability along the shelf life. This depends on the intrinsic resistance of the strain, the nature of the matrix used for freeze-drying, the water activity remaining after lyophilization, the package and the storage conditions. Taking this into consideration, the probiotic supplements industry overfills probiotic capsules or sachets with 1.5 to 4 times more live cells, in order to warrant the delivery at the end of shelf life of the minimum amount of live cells to be able to deliver the expected health benefit. Considering that both freeze-drying and long-term storage may significantly increase the proportion of inanimate microorganisms in a probiotic supplement, a probiotic supplement could easily consist of more inanimate microorganisms than live ones. Yet if the products delivers the minimum amount of live cells to confer a health benefit, this makes the product fit the definition of probiotics so it must be considered a probiotic product. The probiotic focus has been prevalent during previous clinical trials and also during the shelf life of a probiotic product. Maybe we were just overlooking what was going on beyond the information obtained by CFU. These new insights do not change the status of a probiotic, but with due attention given to postbiotic components, offers the possibility to have better and better characterized products in the future.

Figure 1, above – Fluorescence microscopy images of an overnight (18h) culture of bifidobacteria (left) and lactobacilli (right) showing live (green) and non-viable cells (red). The Live/dead BackLight Invitrogen® kit was used for staining cells.

Figure 2, above – Fluorescence microscopy images of a culture of lactobacilli in the exponential (left) and late stationary (right) growth phase showing live (green) and non-viable cells (red). The Live/dead BackLight Invitrogen® kit was used for staining cells.

Are dead probiotics ‘postbiotics’?

What is the contribution of these inanimate cells to the overall health benefit observed for the probiotic culture? In most cases, no evidence exists documenting health benefits of inanimate probiotics. But we may have reason to suspect it may be relevant. For example, a live culture of Bifidobacterium bifidum MIMBb75 significantly alleviated irritable bowel syndrome symptoms and improved quality of life in a double-blind, placebo-controlled study when delivered at 109 CFU, but also the same strain performed equally well for the same end-point when delivered as a heat-inactivated culture. Also, a novel next-generation probiotic strain of Akkermansia muciniphila performed equally well in its live and pasteurized form for improving several metabolic parameters in overweight and obese volunteers. In these cases, it can be said that both strains fit simultaneously the probiotic and the postbiotic definitions.

However, does this mean that as the strain gradually loses viability during storage it gradually becomes a postbiotic? No! This is because method of strain inactivation may play an important role in the health benefit observed. For example, the health benefit delivered by a strain that underwent a heat inactivation can not be assumed to have the same functionality if it is left to die on its own on the shelves. A heat treatment may, for instance, modifiy the spatial display of surface proteins and this may lead to a different immunomodulating capacity of the strain when compared to spontaneous and gradual cell viability lost along storage.

Characterizing probiotic products with an eye to the presence of non-viable cells

By definition, probiotics must be quantified. In the past, this quantification has been limited to numbers of viable cells, typically using a colony count method. This is wholly appropriate, as probiotics must be alive. Yet for the future, will it become necessary to quantify the numbers of non-viable microbial cells as well? With evidence emerging that these non-viable cells may be functional components, then a reasonable argument can be made that this component of a probiotic product should also be quantified. This has implications for characterizing products for use in intervention trials and for the marketplace. The challenge for the marketplace is that probiotic products should deliver the functionality observed in intervention trials.

Reports of trials typically indicate a viable count of the probiotic being tested, but these can be reported in different ways. For example, the statement may indicate delivery of 1.9 × 107 CFU/day of the strain XXX, or delivery of > 1.9 × 107 CFU/day of the strain XXX. These are very different and neither gives any indication of the level of non-viable microbes. The first expression is a specific measure of the viable count at a particular point in time. The second indicates a target minimum and the actual count of viable cells could be much greater. Counts all along the intervention are rarely reported, even though that count could change substantively over time. Papers rarely report if the same batch or different batches of the probiotic preparation were used. The potentially increasing proportion of inanimate microbes is never reported.

In light of postbiotics, future studies should report quantifications of both live and inanimate microbes. Although it is not clear at this time what role inanimate microbes may play in probiotic efficacy, a first step is understanding the composition of probiotic products.

 

ISAPP members can access Dr. Vinderola’s webinar on this topic here. Email info@nullisappscience.org if you require the password.

Using probiotics to support digestive health for dogs

By Kelly S. Swanson, PhD, The Kraft Heinz Company Endowed Professor in Human Nutrition, University of Illinois at Urbana-Champaign, USA

Because dogs are considered to be members of the family by most pet owners today, their health and well-being is a top priority. As with humans, nutritional products supporting gastrointestinal health are some of the most popular. Many pets are healthy, but loose stools, constipation, and various gastrointestinal disorders and diseases such as inflammatory bowel disease and irritable bowel syndrome are common. In fact, within the pet food conversation, digestive health improvements have been the most discussed health benefits among social media discussion posts over the past 2 years (see here). Given the high interest in digestive health, it is not surprising that the canine microbiome has been of great interest over the past decade, with many recent reviews reporting on the overall composition of the gastrointestinal microbiota and how it is impacted by diet (Barko et al., 2018; Alessandri et al., 2020; Wernimont et al., 2020). Gastrointestinal microbiome changes contributing to or resulting from digestive diseases have also been documented in dogs (Redfern et al., 2017; Ziese and Suchodolski, 2021). Animals under high levels of stress or undergoing antibiotic therapy are also known to have poor stool quality and an altered gut microbiota (i.e., dysbiosis) (Pilla et al., 2020).

Dietary fibers and prebiotics are commonly used in complete and balanced diets to improve or maintain stool quality, provide laxation, and positively manipulate the microbiota of healthy animals. The use of probiotics is also popular in dogs, but the route of administration, efficacy, and reason for use is usually different than that of fiber and prebiotics. Probiotics are usually provided in the form of supplements (e.g., powders, capsules, pastes) and are most commonly used to treat animals with gastrointestinal disease rather than support the healthy condition. Live microbes are added to many dry extruded foods as ‘probiotics’, but in many cases, maintaining viability and evidence for a health benefit for dogs is lacking for these products. Such microbes would not meet the minimum criteria to be called a ‘probiotic.’ Viability is a challenge because most HACCP plans for producing complete and balanced pet foods include a kill step that inactivates all microorganisms. Therefore, inclusion must be applied post-extrusion on the outside of the kibble. Even if applied in this way, low numbers of viable organisms are common (Weese and Arroyo, 2003). Post-production inclusion is not possible for other diet formats (e.g., cans, pouches, trays). Although spore-forming bacteria that may survive the extrusion process have been of interest lately, evidence of efficacy is lacking thus far.

Picture of Simka (a Samoyed) courtesy of ISAPP board member Dr. Daniel Tancredi

Even though health benefits coming from the inclusion of live microorganisms in dog foods is not supported by the peer-reviewed literature, such evidence exists for many probiotic supplements. The clinical effects of probiotics in the prevention or treatment of gastrointestinal diseases in dogs have been reviewed recently (Schmitz and Suchodolski, 2016; Suchodolski and Jergens, 2016; Jensen and Bjornvad, 2018; Schmitz, 2021). Although some similarities exist, recent research has shown that distinct dysbiosis networks exist in dogs compared to humans (Vazquez-Baeza et al., 2016), justifying unique prevention and/or treatment strategies for dogs.

One population of dogs shown to benefit from probiotics has been those with acute idiopathic diarrhea and gastroenteritis, with a shorter time to resolution and reduced percentage of dogs requiring antibiotic administration being reported (Kelley et al., 2009; Herstad et al., 2010; Nixon et al., 2019). Probiotic administration has also been shown to benefit dogs undergoing antibiotic therapy and those engaged in endurance exercise – two conditions that alter the gastrointestinal microbiota and often lead to loose stools. In those studies, consumption of a probiotic helped to minimize gastrointestinal microbiome shifts and reduced the incidence and/or shortened the length of diarrhea (Gagne et al., 2013; Fenimore et al., 2017). Dogs diagnosed with inflammatory bowel disease have also been shown to benefit from probiotic consumption (Rossi et al., 2014; White et al., 2017). In these chronic conditions, drug therapy is almost always required, but probiotics have been shown to help normalize intestinal dysbiosis, increase tight junction protein expression, and reduce clinical and histological scores.

So what is the bottom line? Well, for dogs with a sensitive stomach and/or digestive health issues, probiotics may certainly help. Rather than relying on live microbes present in the dog’s food or adding a couple spoonfuls of yogurt to the food bowl each day, it is recommended that owners work with their veterinarian to identify a probiotic that has the best chance for success. The probiotic selected should provide an effective dose, be designed for dogs, target the specific condition in mind, and be backed by science. As summarized here, it is important to remember that all probiotics are different so the specific microorganism(s), supplement form, storage conditions, and dosage are all important details to consider.

 

Kelly Swanson joined the ISAPP board of directors in June, 2020, providing valuable expertise in animal gut health and overall health. Swanson also chaired the 2019 ISAPP-led international consensus panel on the definition of synbiotics.

ISAPP board member Prof. Dan Tancredi kindly provided pictures of Simka, pet Samoyed, for the post.

 

Do antibiotics ‘wipe out’ your gut bacteria?

By Dr. Karen Scott, University of Aberdeen, UK

Antibiotics have been an important tool in medicine to kill pathogenic bacteria and treat infectious diseases for many decades. But for most of those decades, scientists had limited awareness of the community of ‘good’ microbes that reside in our guts and other parts of the body. Now that we have ample evidence of the beneficial functions of these abundant resident microbial communities, we need to be aware of the potential impact antibiotics may have on them – and whether antibiotics might wipe them out, creating a different health problem.

Antibiotics act against basic cellular functions of microbes – targeting cell wall synthesis, DNA/RNA synthesis, protein synthesis and folate synthesis. In order to avoid the effects of the antibiotics, bacteria can either alter their own target molecule so that the antibiotic is ineffective, actively pump the antibiotic out of the cell, or inactivate the antibiotic. With bacteria constantly trying to survive in the face of antibiotics, we are in a continuous race to ensure that the disease-causing bacteria we are trying to eliminate remain susceptible to the antibiotics used to treat them.

The action of antibiotics against bacteria can be classified according to:

  • Bacteriostatic (inhibiting growth of the target microorganism) vs. bactericidal (killing cells)
  • Narrow spectrum (acting against a few specific bacteria) vs. broad spectrum (acting indiscriminately against many bacteria).

Clearly an ‘ideal’ antibiotic would be narrow spectrum and bactericidal, rapidly killing only the target bacteria. In contrast a broad spectrum, bacteriostatic antibiotic may only inhibit growth of the target bacterium and at the same time may be bactericidal to others.

And here we come to the basic problem of antibiotic use in general medicine. When a patient attends the doctor’s office with a complaint such as a sore throat or an ear infection, most likely due to a viral infection, the doctor has a few choices:

  1. The doctor can inform the patient that antibiotics would be ineffective, and that the infection will go away by itself in a few days, and that the patient go home, rest and take other remedies to target symptoms such as pain, fever, or congestion in the meantime.
  2. The doctor can succumb to pressure from the patient demanding a prescription ‘remedy’ and prescribe an unnecessary and useless course of antibiotics. While this was common in the past, in many countries doctors now stand firm, maintaining antibiotics would be ineffective and are not required.
  3. The doctor can offer a delayed antibiotic prescription – sending the patient away with a prescription but advising the patient to wait for a couple of days to see if symptoms resolve before deciding if the prescription is required. This approach is becoming more common and does reduce unnecessary antibiotic use.
  4. Finally, the doctor can determine that even if the original illness was caused by a virus, there is now a secondary bacterial infection and that a course of antibiotics is now required. The problem here is that without a laboratory test the doctor cannot be sure which bacterium is causing the disease so in order to be sure that the antibiotic will be effective, a broad spectrum antibiotic is often prescribed.

Any antibiotic prescription that the patient collects from the chemist (pharmacist) and starts taking, immediately causes collateral damage to their own resident microbiota. It is now well-established that a short course of antibiotics disrupts the gut bacterial community, killing many important resident bacteria. This can be observed by a reduction in diversity (see articles here and here, and figure here), meaning that fewer different bacterial groups can be detected. Normally once the patient stops taking the antibiotic the diversity of the community increases within a month, almost returning to the starting composition. Almost. Some bacterial species are particularly sensitive to certain antibiotics and may never recover. Oxalobacter formigenes, the bacterium that protects against kidney stone formation, is one example.

The other hidden effect of antibiotic treatment is that although all members of the microbial community may re-establish, they may not be the same as before. The levels of antibiotic resistance amongst bacteria isolated from samples from patients after seven days of antibiotic treatment were much higher than those from controls without any treatment, even four years later (see here). The selection pressure exerted on bacteria during short courses of antibiotic treatment results in transfer of antibiotic resistance genes, and the spread of resistance to many other members of the microbial community, increasing the overall resistance profile. Whilst this may not be immediately damaging to the health of the person, this change in baseline resistance does mean that a subsequent course of antibiotic treatment could be less successful because more bacteria will be able to withstand being affected by the antibiotic, and more bacteria will contain resistance genes that could be transferred to disease-causing bacterium.

Historically, as soon as we started using purified antimicrobials therapeutically, we started seeing rise of resistance to those antibiotics. The first recognised tetracycline resistance gene, otrA, was identified in Streptomyces, a genus of Gram-positive bacteria now known to produce many antimicrobial agents as secondary metabolites (see figure here).

The indiscriminate effects of antibiotics can be even more severe in hospitalised patients. Recurring Clostridioides difficile-associated diarrhoea (CDAD) is a direct consequence of antibiotic treatment. The microbial diversity decreases in patients receiving antibiotics for legitimate therapeutic reasons, and the Clostridioides difficile population expands to occupy empty niches. Overgrowth of C. difficile results in toxin production, abdominal pain, fever and ultimately CDAD. Treatment is difficult because some C. difficile strains are antibiotic resistant and C. difficile forms non-growing spores that persist during the antibiotic treatment. This means that even if the initial infection is successfully treated, once the antibiotic treatment ceases the spores can germinate and cause recurring C. difficile infections. Although initial treatment with antibiotics works for 75% of patients, the remaining 25% end up with recurring CDAD infections. A more effective treatment may be faecal microbial transplant (FMT) therapy (see blog post here).

Scientists have spent the last 20 years investigating the many ‘good microbes’ that inhabit our intestinal tracts leading to a much greater understanding of what they do, and the potential repercussions when we destroy them. This means we are now very aware of the collateral damage a course of antibiotics can have. A new era of developing the ‘good microbes’ themselves as therapeutic agents, using them to treat disease, or to recolonise damaged intestinal ecosystems, beckons. New drugs may take the form of next generation probiotics or whole microbial community faecal transplants, or even postbiotics, but the common feature is that they are derived from the abundance of our important natural gut inhabitants.

 

Can control of body malodor using probiotic topical cream be considered as a health benefit?

By Victoria Onwuliri, Masters degree student, with Dr. Kingsley C. Anukam, Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Anambra State, Nigeria.

I recall years back as a teenager, axillary sweating and pubertal odor were one of the overwhelming challenges I experienced. It really affected how I related with the people around me, and I became socially withdrawn. I was introduced to the use of deodorants after a very attractive advertisement on television. Truthfully, though, these personal hygiene products were not a good match for my active teenage lifestyle because their effects waned easily and I was back to my sweaty self. This continued with all different products I used; they would wear off, leaving my axilla smelling stronger than before. Sharing my experience with other adolescents like me made me realize that we all were facing similar issues and were seeking a long-lasting solution. I am very certain many teenagers and young adults all over the world are currently experiencing same problem and are in need of a solution.

Later on, as a scientist, I wondered if I could explore a solution for this problem. First, what was causing the odor? Several fundamental studies have shown that the apocrine gland that is located in the hypodermis of the skin is responsible for secreting the odorless precursor molecules. These precursors are transformed by some bacteria residing on the skin into smelly molecules including but not limited to sulphanylalkanols, short volatile branched-chain fatty acids and some steroid derivatives. It should be noted that both males and females produce some levels of body odor, but the intensity varies as females have 75% more apocrine glands in their armpits than males but males have larger apocrine glands. The differences in the size and number of apocrine glands may explain why males tend to smell more than females. (I hope my male colleagues will not take offense for my sharing this fact). However, differences in hygiene habits such as regular shaving, use of antiseptic soap, use of deodorants and antiperspirants could also play a role.

I was involved in a study with Dr. Kingsley C. Anukam as my supervisor in 2019 on the effect of antiperspirants and deodorants on the axillary skin microbiome of adult male and female subjects. This study supported my teenage observation that I was worse off after using these products: the study showed that the resultant effect of the regular use of these personal hygiene products was an imbalance in the seemingly normal bacterial population of the axillary skin, thereby promoting the proliferation of malodor-producing organisms such as Corynebacterium, Cutibacterium, some Staphylococcus and Streptococcus species. Interestingly lactobacilli were also detected in the axilla of over 82% of female and over 81% of male subjects, though in low relative abundance which suggests that lactobacilli might be considered as part of the normal axillary bacterial community. From this work, an idea emerged on exploring the possible beneficial effect of probiotics in decreasing the relative abundance of malodor-producing bacteria in the axilla of healthy adult individuals.

Dr. Anukam and I set up a study and employed the use of oil-based topical cream, made from natural ingredients, fortified with a probiotic of Nigerian origin, Lactiplantibacillus pentosus KCA1 strain.

Since some species of Corynebacterium (particularly Corynebacterium striatum, and Corynebacterium jeikeium), and Staphylococcus haemolyticus, Staphylococcus hominis, and Staphylococcus lugdunensis isolated from human axilla have been implicated in the generation of malodour volatile substances 1,2, and the fact that we identified lactobacilli in low abundance in the axilla of healthy subjects compared with Corynebacterium and Staphylococcus species, Dr. Anukam, agreed that applying lactobacilli, (which are generally regarded as safe bacteria) to the skin might change the ecology to a state whereby some lactobacilli with probiotic characteristics can nestle on the axillary skin.

The data obtained from the study3 which has already been published in the Journal of Cosmetic Dermatology (https://doi.10.1111/jocd.13949) showed the positive impact of this probiotic-fortified topical cream on the human axillary skin microbiota, as a means of reducing axillary malodor. We drew this conclusion based on the fact that malodor-producing Staphylococcus and Corynebacterium species were significantly reduced in abundance after applying the probiotic cream. In addition, all the participants gave positive feedback as they reported not perceiving any malodor during the study period.  Another interesting in silico finding from the study was the down-regulation of the bacterial metabolic functional genes such as the PLP-dependent protein (K06997) and pyridoxal 5′-phosphate synthase pdxS subunit (K06215) after the application of the probiotic cream.

This appears much more desirable when compared to the effect of regular usage of antiperspirants and deodorants on the axillary skin microbiome.

However, some arguments have arisen whether reduction of body odor could be taken as a health benefit since probiotic definition stipulates that a probiotic must ‘confer a health benefit on the host’. We know that body malodor has some social and psychological implications to some people which might impact negatively on their mental health. We therefore suggest that using tested microorganisms to reduce body malodor may contribute to the wellbeing of individuals, so this would count as a probiotic intervention.

We are not saying that probiotic cream alone would completely solve the problem of axillary skin/body malodor, but we believe its positive effect outweighs that of the antiperspirants and deodorants. In addition, the potential beneficial effects of skin-based probiotics could be increasingly explored by the cosmetic and pharmaceutical industries. Regarding our work, further study involving a larger population and more insight on the functional malodor control attributes of lactobacilli are warranted. I know teenagers everywhere are waiting for this breakthrough.

Preparation of topical cream fortified with Lactiplantibacillus pentosus KCA1

(GeneBank Accession # NZ_CM001538.1)

The study used natural ingredients that have already-known benefits on the skin, in the preparation of the topical cream. During the preparation, ingredients were heated and purified, in order to maintain sterility and keep them in their oil forms before the incorporation of the lyophilized Lactiplantibacillus pentosus KCA1.

Finished product:

 

 

Ingredients:

Cocoa butter, coconut oil, lavender oil, shea butter, lyophilized Lactiplantibacillus pentosus KCA1

 

 

References

  1. Natsch A, Schmid J, Flachsmann F. Identification of odoriferous sulfanylalkanols in human axilla secretions and their formation through cleavage of cysteine precursors by a C-S lyase isolated from axilla bacteria. Chem Biodivers. 2004;1(7):1058–72
  2. Bawdon D, Cox DS, Ashford D, James AG, Thomas GH. Identification of axillary Staphylococcus sp. involved in the production of the malodorous thioalcohol 3-methyl-3-sufanylhexan-1-ol. FEMS Microbiology Letters 2015; 362: fnv111. doi: 10.1093/femsle/fnv111
  3. Onwuliri V, Agbakoba NR, Anukam KC. Topical cream containing live lactobacilli decreases malodor-producing bacteria and downregulates genes encoding PLP-dependent enzymes on the axillary skin microbiome of healthy adult Nigerians. J Cosmet Dermatol. 2021;00:1–10. https://doi.org/10.1111/jocd.13949

 

 

 

Victoria Onwuliri is a Master degree student in the Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Anambra State, Nigeria.

Bacterial vesicles: Emerging potential postbiotics

By Dr. Gabriel Vinderola, PhD,  Associate Professor of Microbiology at the Faculty of Chemical Engineering from the National University of Litoral and Principal Researcher from CONICET at Dairy Products Institute (CONICET-UNL), Santa Fe, Argentina

The recently published ISAPP consensus paper defines a postbiotic as “a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host“. Such a definition quickly brings to mind that a postbiotic is not equivalent to microbial metabolites. A postbiotic should also contain inanimate microbial cells or cell fragments. Metabolites or fermentation products may be present, but they are not required.

Because microbes are complex entities, we must be open to innovative understandings of what a postbiotic might entail. Indeed, although not explicitly mentioned in the ISAPP consensus paper, extracellular membrane vesicles may comprise an innovative conceptualization of a postbiotic, falling within the ‘cell component’ part of the postbiotic definition.

Bacterial vesicles

Extracellular membrane vesicles (EMV) are universal carriers of biological information produced in all domains of life. Bacterial EMV are small, spheroidal, membrane-derived proteoliposomal nanostructures, typically ranging from 25 – 250 nm in diameter, containing proteins, lipids, nucleic acids, metabolites, numerous surface molecules and many other biomolecules derived from their progenitor bacteria (Figure 1). Bacterial vesicles have been known for more than 50 years as structures able to carry cellular material (Ñahui Palomino et al. 2021).  However, studies on membrane vesicles derived from Gram-positive bacteria are more recent as it was for a time believed they were incapable of producing vesicles due to their thick and complex cell walls, and the lack of an outer membrane. Today, EMVs have been isolated from Gram-positive probiotic bacteria, including those belonging to the Lactobacillaceae family (under which Lactobacillus was recently split into many new genera) and the Bifidobacterium genus. In probiotic bacteria, vesicles may mediate quorum sensing and material exchange. Perhaps even more important, they can act as mediators of bacteria-to-cell and bacteria-to-bacteria interactions. As bacterial EMV are inanimate structures that cannot replicate, they fit the postbiotic definiton as cell components as long as other criteria stipulated by the definition are met.

Figure 1. Membrane vesicles budding on the surface of L. reuteri DSM 17938 and released into the surrounding medium. These vesicles were described in by Grande et al. 2017. Photo used with permission of BioGaia.

Functions of bacterial vesicles related to potential health benefits

Underlying mechanisms and corresponding molecules driving health effects of bacterial vesicles are not well understood, in part due to reliance on in vitro models. Bacterial EMV derived from Lactobacillaceae spp., Bifidobacterium spp., and Akkermansia spp. have been reported to alleviate metabolic syndrome and allergy symptoms, promote T-cell activation and IgA production, strengthen gut barrier function, and exhibit anti-viral and immunomodulatory properties (Kim et al. 2016; Tan et al. 2018; Ashrafian et al. 2019; Molina-Tijeras et al. 2019; Palomino et al. 2019; Shehata et al. 2019; Bäuerl et al. 2020). Interestingly, vesicles from Limosilactobacillus reuteri DSM 17938 (West et al. 2020) and Lacticaseibacillus casei BL23 (Domínguez Rubio et al. 2017) may accomplish some of the the effects of these probiotic bacteria. In fact it is not unreasonable to think that EMVs may be already present and active in probiotic products.

Challenges for bacterial vesicle production

To develop a postbiotic from microbial EMVs, many challenges need to be overcome.  Defining optimal cultivation conditions, and methods for vesicle release, isolation and scaling up are some of the challenges of bacterial vesicle production. There are several studies showing that altering the cultivation parameters can impact vesicle production. Examples of treatments shown to increase vesicle release include exposure to UV radiation and antibiotic pressure (Gamalier et al. 2017; Gill et al. 2019). Exposure to glycine has also been shown to increase vesicle production (Hirayama & Nakao 2020). Interventions during culture, for example by introducing agitation and varying pH, can possibly be ways to potentiate vesicle release and increase their bioactivity (Müller et al. 2021). A recent report also revealed that B. longum NCC2705 released a myriad of vesicles when cultured in human fecal fermentation broth, but not in basal GAM anaerobic medium (Figure 1). Moreover, the B. longum vesicle production pattern differed among individual fecal samples suggesting that metabolites derived from symbiotic microbiota stimulate the active production of vesicles in a different manner (Nishiyama et al. 2020). Whether any of these treatments and culture conditions are general or strain specific remains to be elucidated. Large differences in the number of vesicles that may be obtained by different extraction methods can occur (Tian et al. 2020). Tangential flow filtration or the use of antibodies targeting specific epitopes of the vesicles are some of the options proposed for the large scale isolation of EMV (Klimentová & Stulík 2015).

Figure 2. Left: Bifidobacterium longum NCC2705 grown on GAM broth. Right: secretion of membrane vesicles by Bifidobacterium longum NCC2705: the strain was cultured in bacterial-free human fecal fermentation broth and secreted a myriad of membrane vesicles. Reported and adapted from Nishiyama et al. 2020.

Progress has been made on the production of bacterial vesicles in recent years, yet several issues remain to be clarified including how vesicles are generated from the progenitor microbe, how the composition of vesicles changes according to the culture conditions, how to target specific bacterial vesicle purification from a pool of vesicles derived from other organisms (for example, bacterial vesicles produced in milky media can be accompanied by vesicles from eukaryotic cells present in the milk), safety aspects, quantification methods and the regulation of their use by the corresponding authority.

Their future as potential postbiotics

Membrane vesicles are an exciting opportunity for the development of postbiotics. A potential benefit of vesicles is that their small size compared to whole cells may enable them to more readily migrate to host tissues that could not be otherwise reached by a whole cell (Kulp & Kuehn 2010). Their nanostructure enables them to penetrate through the gut barrier and to be delivered to previously unreachable sites through the bloodstream or lymphatic vessels, and to interact with different cell types (Jones et al. 2020). For example, bacterial rRNA and rDNA found in the bloodstream and the brain of Alzheimer’s patients were postulated to have originated from bacteria vesicles (Park et al. 2017). Safety of EMVs must be carefully considered and assessed, even if they are derived from microbes generally recognized as safe, as their small size may increase penetration capacity with potential and yet unknown systemic effects. Novel postbiotics derived from microbial membrane vesicles is an intriguing area for future research to better understand production parameters, safety and functionality.

Thanks to Cheng Chung Yong, postdoctoral researcher at Morinaga Milk Industry Co., LTD (Japan) and Ludwig Lundqvist, industrial PhD student at BioGaia AB (Sweden) for their contributions to this blog, and Mary Ellen Sanders and Sarah Lebeer from ISAPP for fruitful discussions.

References

Ashrafian, F., Shahriary, A., Behrouzi, A., Moradi, H.R., Keshavarz Azizi Raftar, S., Lari, A., Hadifar, S., Yaghoubfar, R., Ahmadi Badi, S., Khatami, S. and Vaziri, F., 2019. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Frontiers in microbiology10, p.2155.

Bäuerl, C., Coll-Marqués, J.M., Tarazona-González, C. and Pérez-Martínez, G., 2020. Lactobacillus casei extracellular vesicles stimulate EGFR pathway likely due to the presence of proteins P40 and P75 bound to their surface. Scientific reports10(1), pp.1-12.

Domínguez Rubio, A.P., Martínez, J.H., Martínez Casillas, D.C., Coluccio Leskow, F., Piuri, M. and Pérez, O.E., 2017. Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect. Frontiers in microbiology8, p.1783.

Gamalier, J.P., Silva, T.P., Zarantonello, V., Dias, F.F. and Melo, R.C., 2017. Increased production of outer membrane vesicles by cultured freshwater bacteria in response to ultraviolet radiation. Microbiological research194, pp.38-46.

Grande, R., Celia, C., Mincione, G., Stringaro, A., Di Marzio, L., Colone, M., Di Marcantonio, M.C., Savino, L., Puca, V., Santoliquido, R. and Locatelli, M., 2017. Detection and physicochemical characterization of membrane vesicles (MVs) of Lactobacillus reuteri DSM 17938. Frontiers in microbiology8, p.1040.

Gill, S., Catchpole, R. & Forterre, P., 2019. Extracellular membrane vesicles in the three domains of life and beyond. FEMS microbiology reviews, 43(3), pp.273–303.

Hirayama, S. & Nakao, R., 2020. Glycine significantly enhances bacterial membrane vesicle production: a powerful approach for isolation of LPS-reduced membrane vesicles of probiotic Escherichia coli. Microbial biotechnology, 13(4), pp.1162–1178.

Jones, E.J., Booth, C., Fonseca, S., Parker, A., Cross, K., Miquel-Clopés, A., Hautefort, I., Mayer, U., Wileman, T., Stentz, R. and Carding, S.R., 2020. The uptake, trafficking, and biodistribution of Bacteroides thetaiotaomicron generated outer membrane vesicles. Frontiers in microbiology11, p.57.

Kim, J.H., Jeun, E.J., Hong, C.P., Kim, S.H., Jang, M.S., Lee, E.J., Moon, S.J., Yun, C.H., Im, S.H., Jeong, S.G. and Park, B.Y., 2016. Extracellular vesicle–derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression. Journal of Allergy and Clinical Immunology137(2), pp.507-516.

Kulp, A. & Kuehn, M.J., 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annual review of microbiology, 64, pp.163–184.

Molina-Tijeras, J.A., Gálvez, J. & Rodríguez-Cabezas, M.E., 2019. The immunomodulatory properties of extracellular vesicles derived from probiotics: a novel approach for the management of gastrointestinal diseases. Nutrients, 11(5), p.1038.

Müller, L., Kuhn, T., Koch, M. and Fuhrmann, G., 2021. Stimulation of probiotic bacteria induces release of membrane vesicles with augmented anti-inflammatory activity. ACS Applied Bio Materials4(5), pp.3739-3748.

Ñahui Palomino, R.A., Vanpouille, C., Costantini, P.E. and Margolis, L., 2021. Microbiota–host communications: Bacterial extracellular vesicles as a common language. PLoS Pathogens17(5), p.e1009508.

Nishiyama, K., Takaki, T., Sugiyama, M., Fukuda, I., Aiso, M., Mukai, T., Odamaki, T., Xiao, J. Z., Osawa, R., & Okada, N. 2020. Extracellular vesicles produced by Bifidobacterium longum export mucin-binding proteins. Applied and Environmental Microbiology, 86(19), e01464-20.

Palomino, R.A.Ñ., Vanpouille, C., Laghi, L., Parolin, C., Melikov, K., Backlund, P., Vitali, B. and Margolis, L., 2019. Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues. Nature communications10(1), pp.1-14.

Park, J.Y., Choi, J., Lee, Y., Lee, J.E., Lee, E.H., Kwon, H.J., Yang, J., Jeong, B.R., Kim, Y.K. and Han, P.L., 2017. Metagenome analysis of bodily microbiota in a mouse model of Alzheimer disease using bacteria-derived membrane vesicles in blood. Experimental neurobiology26(6), p.369.

Shehata, M.M., Mostafa, A., Teubner, L., Mahmoud, S.H., Kandeil, A., Elshesheny, R., Boubak, T.A., Frantz, R., Pietra, L.L., Pleschka, S. and Osman, A., 2019. Bacterial outer membrane vesicles (omvs)-based dual vaccine for influenza a h1n1 virus and mers-cov. Vaccines7(2), p.46.

Tan, K., Li, R., Huang, X. and Liu, Q., 2018. Outer membrane vesicles: current status and future direction of these novel vaccine adjuvants. Frontiers in microbiology9, p.783.

Tian, Y., Gong, M., Hu, Y., Liu, H., Zhang, W., Zhang, M., Hu, X., Aubert, D., Zhu, S., Wu, L. and Yan, X., 2020. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. Journal of extracellular vesicles9(1), p.1697028.

West, C.L., Stanisz, A.M., Mao, Y.K., Champagne-Jorgensen, K., Bienenstock, J. and Kunze, W.A., 2020. Microvesicles from Lactobacillus reuteri (DSM-17938) completely reproduce modulation of gut motility by bacteria in mice. PloS one15(1

Can dietary supplements be used safely and reliably in vulnerable populations?

By Dr. Greg Leyer, Sr. Director – Scientific Affairs, Chr. Hansen, Inc., Madison, WI and Prof. Dan Merenstein, Department of Family Medicine, Georgetown University Medical Center, Washington DC

What is it that doctors look for when recommending or prescribing therapies to patients? If it is a drug, a supplement, a new diet, or even a new exercise regimen, they look for safety and efficacy. There are of course other things to consider, including cost, ease of administration, and patient compliance, among others. But safety and efficacy are their foremost concerns.

A recently published clinical report from the American Academy of Pediatrics (AAP) (Poindexter 2021) examined the evidence for probiotics to prevent morbidity and mortality in preterm infants. They concluded that probiotics could not be recommended. This differs from conclusions of the American Gastroenterological Association (AGA) (Su et al. 2020), which recommended specific probiotic strains for preterm (less than 37 weeks gestational age) and low birth weight infants. The AAP report also differs from the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) (Van den Akker et al. 2020), which recommends specific strains for this use, although their recommendations are not fully aligned with AGA’s (see What’s a Clinician to do When the Probiotic Recommendations from Medical Organizations Do Not Agree?).

The AAP report does a thorough job of reviewing data on use of probiotics in the NICU, including conflicting studies, lack of confirmatory studies of efficacious strains, and safety and cross contamination inside the NICU. However, the overriding theme of the report is “clinicians must be aware of the lack of regulatory standards for commercially available probiotic preparations manufactured as dietary supplements and the potential for contamination with pathogenic species.” Therefore, at the heart of the AAP failure to recommend probiotics is the concern that the quality of available products is insufficient. Because of the absence of a pharmaceutical-grade probiotic product for use in the United States, they posit, they cannot recommend usage. It is noteworthy that the trials performed on premature infants resulting in multiple conclusions of safety and efficacy have thus far utilized probiotic products manufactured as dietary supplements.

Probiotics can be marketed as drugs if they follow that regulatory pathway, but generally in the US they are sold under the regulatory classification of dietary supplements. Is the AAP correct that no dietary supplement is of sufficient quality to recommend for use in preterm infants?

Quality of probiotic dietary supplement probiotics. Dietary supplements were a category of product developed to supplement the diet of the generally healthy population, not to treat or prevent disease. In practice this is an important distinction, because while the safety standard is high for dietary supplements for healthy individuals (see comments by food safety expert Jim Heimbach here), such supplements do not need to be established as safe for patient populations. But in the case of probiotics, many clinical trials have evaluated safety and efficacy for prevention or treatment of disease, more aligned with drug uses. Yet probiotic products supported by these data are not marketed in the US as drugs.

It is a common misperception that dietary supplements are “not regulated”. However, the FDA has clear good manufacturing practices (GMP’s) and regulations dedicated to dietary supplement manufacturing.  The onus is on manufacturers to establish appropriate product specifications based on intended use and risk. Reputable manufactures establish rigorous purity, strength, and identity quality standards consistent with the intended population and sufficient for that use. Products intended for infants, including premature infants, should be manufactured under quality standards more rigorous than those intended for a healthy adult population. For example, Chr. Hansen bases the enhanced specifications for products aimed at infants, and preterm infants, on elements of Codex standards for infant formula, amongst other stringent microbiological criteria. This would include manufacturing the probiotic strain to an “infant” grade, employing stricter environmental monitoring, sanitation, and airflow control throughout the process, careful selection of raw ingredients for infant compatibility, and enhanced testing and purity standards using validated methods at every step. The internal manufacturing standards that Chr. Hansen applies for products intended for infants, and preterm infants, are much stricter than typical dietary supplement standards, and are appropriate for their intended use.

Therefore, there are high quality, safe probiotic products produced under dietary supplement regulations even though such products do not carry any label statement claiming this added level of quality. However, products sourced for hospitals to stock in formularies could work with the supplier to demand this extra level of product testing specifications. Pharmacies can institute quality agreements with vendors that would delineate their expectations for the strains present, the levels of live microbes acceptable in the final product, etc. This agreement could also mandate that any product change – as defined in the agreement – would require the vendor to notify the customer. Such an agreement might be burdensome for a hospital pharmacist, but a sophisticated dietary supplement company should be able to assure the hospital formulary of their quality.

Products made using strict specifications, geared towards infant and premature infant applications, are on the market and are safely being used in this patient population in many NICUs and as part of infant formulas. We disagree with AAP’s position that a pharmaceutical approach is needed, as long as a product of sufficient quality can be provided. To deny preterm infants probiotics, which have a significant chance of improving their clinical outcomes, is not in line with other medical recommendations. Instead, the hospital formularies should stock products that have been scrutinized for sufficient evidence of safety and efficacy. Suppliers of stocked products should provide product testing results, a description of the quality standards employed during production, and a rationale for the suitability of the standards for preterm infants. Third party verification of adherence to these quality standards would assure medical professionals regarding the safety of these products for use.

References

CAC/RCP 66-2008. Code of hygienic practice for powdered formulae for infants and young children. Codex.

Poindexter, B. 2021. Use of Probiotics in Preterm Infants. Pediatrics 147 (6): e202 1051485.

Su et al. 2020. AGA Clinical Practice Guidelines on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology 159:697-705.

Van den Akker et al.  2020. Probiotics and Preterm Infants: A Position Paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics. Journal of Pediatric Gastroenterology and Nutrition. 70(5):664-680.

 

 

What do we mean by ‘conferring a health benefit on the host’?

By Prof. Colin Hill, University College Cork, Ireland

Four of the Consensus definitions produced by ISAPP in recent years (see 1-4 below) finish with a similar wording, insisting that probiotics, prebiotics, synbiotics and postbiotics must confer a health benefit on the host”. This proviso was included to explicitly reinforce the fact that the raison d’etre for these interventions is that they must demonstrably improve host health. It would perhaps be wise to just stop there and leave the interpretation of what this really means to each individual reader. But that would not make for a very long blog and I am not very wise. Furthermore, it is useful to be more precise for scientific and regulatory purposes. At least two aspects seem to be open to elaboration; what is meant by ‘host’ and what is a ‘health benefit’? I will base my thoughts on the probiotic definition, but the logic should apply equally to all four health-based definitions.

Host. According to the Google dictionary a host is an animal or plant on or in which a parasite or commensal organism lives’. This means there are millions of potential host species on our planet, something that could potentially create confusion. For example, if a well characterised microbe (or microbes) is shown to provide a measurable health benefit when administered in adequate amounts in a murine model (the host) then it clearly meets the stated definition of probiotic. But only for mice! It should not be referred to as a probiotic for other species, including humans, solely based on murine evidence. This creates a situation where the same microbe can clearly meet the criteria to be a probiotic for one host but not for another. This is not simply semantics; it is of vital importance that it should not be assumed that health benefits confirmed in one host will also be realised in another without supporting evidence. Since the majority of discussions of probiotics address human applications, it may serve all stakeholders well – even if not directly mandated by the definition – if the word ‘probiotic’ was only used without qualification for microbes with measurable benefits in humans while all others should be qualified with the target host; ‘equine probiotic’, ‘canine probiotic’, or even ‘plant probiotic’.

Health benefit. Health is of course a continuum from a desirable but almost certainly unattainable state where every organ is performing optimally (something I will term ‘ideal health’) to a point where death is imminent (that I will term ‘poor health’). Of course, health is multidimensional and far more complex than a straight line between ‘ideal’ and ‘poor’ but for simplicity I will treat it as such. If we place ideal health on the left end of our straight line and poor health at the right end, then obviously any shift towards the left can be considered a health benefit. It could even be reasonably argued that if someone is gradually progressing from left to right down our imaginary line (for example, as we age) then halting or slowing down that progression could also be considered a health benefit. From this perspective every individual (not just the unwell) could potentially derive a health benefit from a probiotic, prebiotic, synbiotic or postbiotic.

The issue of cosmetic benefits is more nuanced. If an intervention improves someone’s appearance (or reduces body odour for example) it might not be considered a health benefit per se, but of course it could well have a beneficial effect on an individuals’ mental health. I will leave it to the psychologists and psychiatrists to determine how this could be convincingly demonstrated.

There is also the issue of production characteristics where the host is a food animal or a crop. If a microbial-based intervention leads to faster growth rates and increased yields should this qualify as a health benefit? My own opinion is if the intervention leads to higher productivity by preventing infections it could be considered a health benefit, but not if it simply leads to faster growth rates by improving feed conversion for example.

Can changing the microbiome be considered a health benefit? A trickier question is whether a direct effect on the microbiome could be considered as a health benefit? Every host has a microbiome of a particular configuration, richness, and diversity. I don’t think we are yet at a point where measurable changes in these general indices of microbiome composition can be termed a health benefit in the absence of a link to a more established health outcome. The consequence of any change will be microbiome-specific in any event; a reduction in diversity in the vaginal microbiome might be desirable, whereas an increase in diversity in the gut microbiome might well be considered beneficial. But what if we can measure a reproducible reduction in a specific pathobiont like Clostridioides difficile, or an increase in a microbe that is associated with good health such as Bifidobacterium? In my opinion we are arriving at a point where we can begin to refer to these impacts as a health benefit. This will become more and more relevant as we establish direct causal links between individual commensal microbes and health outcomes. Equally, an intervention that preserves microbiome structure during a disruption (e.g. infection or antibiotic treatment) could also be considered as beneficial. I don’t know if regulators are yet at the point of accepting outcomes such as these as direct health benefits, but I believe a strong case can be made.

To finish, I believe that it is a very exciting time for all of us in the field of probiotics, prebiotics, synbiotics and postbiotics, but it is really important that all of this important science is not compromised by loose language or by literal interpretations that adhere to the letter of the definitions but not to the intent. If you want to fully understand the intent of the definitions, I encourage you to read the full text of the consensus papers.

 

  1. https://doi.org/10.1038/nrgastro.2014.66
  2. https://doi.org/10.1038/nrgastro.2017.75
  3. https://doi.org/10.1038/s41575-020-0344-2
  4. https://doi.org/10.1038/s41575-021-00440-6

A postbiotic is not simply a dead probiotic

By Dr. Gabriel Vinderola, PhD,  Associate Professor of Microbiology at the Faculty of Chemical Engineering from the National University of Litoral and Principal Researcher from CONICET at Dairy Products Institute (CONICET-UNL), Santa Fe, Argentina

Postbiotics, recently addressed in an ISAPP consensus panel paper, are defined as a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host. Criteria to meet the postbiotic definition are summarized here. One noteworthy aspect of this definition is that the word ‘probiotic’ does not appear. Although in practice a probiotic strain may be used as a progenitor strain in the manufacture of a postbiotic, the simple process of inactivating a probiotic is not sufficient to be called a postbiotic. It cannot be assumed that any non-viable probiotic cells in a probiotic product are automatically considered a postbiotic component. If a probiotic strain is used as a progenitor of a postbiotic, an efficacy study must be redone using the inanimate preparation and a benefit must be demonstrated. A probiotic product displaying fewer than the labeled count of viable cells is merely a low-quality product; it is not a postbiotic.

Further, the ISAPP consensus definition on postbiotics recognizes that the process of making a postbiotic implies a deliberate step to inactivate the viable cells of the progenitor strain. This process can be achieved by different technological steps such as heat-treatment (perhaps the most feasible approach), high pressure, radiation or simply aerobic exposure for strict anaerobes. A corresponding efficacy study must be conducted on the preparation. Or at the very least, any postbiotic component of a probiotic product must be specifically shown to contribute to the health benefit conferred by the product.

In contrast to postbiotics, probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Four minimum criteria should be met for a strain to be considered as a probiotic: (i) sufficiently characterized; (ii) safe for the intended use; (iii) supported by at least one positive human clinical trial conducted according to generally accepted scientific standards or as per recommendations and provisions of local/national authorities when applicable; and (iv) alive in the product at an efficacious dose throughout shelf life (Binda et al. 2020). This last requirement reflects the key difference between probiotics and postbiotics. Probiotics must deliver an efficacious number of viable cells through the shelf life of the product. In practice, probiotic products may display significant numbers of non-viable cells (Raymond & Champagne, 2015), as some cells may lose viability during the technological process of biomass production, while undergoing manufacture or preservation steps and through product storage prior to purchase. In order to provide the target dose until end of shelf life, an overage of 0.5 to 1 log order CFU above the expected counts of viable cells is commonly included in the product to compensate for potential losses during product storage and handling (Fenster et al. 2019).

Thus, some quantity of non-viable cells may be usually expected in certain probiotic products, especially supplement products claiming a long, room temperature stable shelf-life. However, they will be considered as probiotic products of quality as long as they are able to deliver the expected amount of viable cells until the end of the product shelf-life. It is worth mentioning that the probiotics are expected to be viable at the moment of their administration. After that, if exposure to different regions of the gut causes cells to die, it is not of consequence as long as a health effect is achieved.

Probiotics and postbiotics have things in common (the need of efficacy studies that demonstrates their benefits) and things that distinguish them (the former are administered alive, whereas the latter are administrated in their inanimate form), but no probiotic becomes a postbiotic just by losing cell viability during storage.

Pharmacists as influencers of probiotic use

By Kristina Campbell, science writer

It’s not an uncommon scene in a pharmacy: someone standing in front of the shelf of probiotic products, picking up various bottles and reading the labels, looking uncertain. The person’s doctor may have recommended a certain brand of probiotic to prevent diarrhea with a prescribed course of antibiotics—but they’ve just noticed that the store-brand probiotic, with different strains, is half the price.

Dragana Skokovic-Sunjic

According to Dragana Skokovic-Sunjic, clinical pharmacist and author of the ‘Clinical Guide to Probiotic Products Available in Canada/US’, pharmacists can play an important and influential role helping patients make informed decisions about the available products. “Pharmacists provide a ‘last check validation’ before the patient actually decides to purchase a product,” she says. “And we proactively seek to assist those patients who need help.”

Nardine Nakhla

Nardine Nakhla, clinical pharmacist and Clinical Lecturer at the University of Waterloo School of Pharmacy, says pharmacists often have the knowledge and experience to zero in on which over-the-counter product(s) will or will not work for a certain individual. “Pharmacists have the knowledge and skills to individualize the recommendation based on patient-specific and disease-specific factors, and that is so very important with non-prescription and natural health products because there is no one-size-fits-all approach,” she says.

Can pharmacists apply their knowledge and skills to make specific probiotic recommendations? While it can be hard to narrow the evidence down on specific products, pharmacists can certainly play a role in helping patients understand the evidence for the products they encounter. In a recent interview with ISAPP, Skokovic-Sunjic and Nakhla explained why pharmacists in Canada and elsewhere have the potential to steer people’s choice of over-the-counter and natural health products – including probiotics.

Pharmacists have knowledge about the products on their shelves.

“Advising patients on self-care, which includes over-the-counter and natural health product use, is a key responsibility of Canadian pharmacists. We have North American survey data that shows, for patients who go out and buy non-prescription and natural health products, over 80% never read the label,” says Nakhla.

This means that having a pharmacist available at the point-of-purchase to answer questions can go a long way toward educating people about what’s actually in their hands and how to optimize use, if warranted.

“Having the pharmacist present lets you access somebody who can help inform your decisions—someone who can perhaps steer you away from products that may not be appropriate for you,” she says.

“Pharmacists need to be familiar with the products they are selling at their pharmacies,” adds Skokovic-Sunjic. “They are skilled at asking suitable questions to ensure the patient’s needs and wishes are understood and then to help them choose appropriate over-the-counter, ‘self-selection’ therapy.”

Pharmacists are unique in having non-prescription products within their standards of practice.

As a faculty member at the school of pharmacy, Nakhla emphasizes the requirement for pharmacists to know how to assess and manage patients seeking self-care in the community. She says, “We have a unique body of knowledge where we study non-prescription therapeutics and other self-care measures of disease management and health maintenance,” she says. “Pharmacists are trained to know about these and to recommend evidence-based and cost-effective measures individualized for each patient.”

“It’s explicitly stated under our Standards of Practice that we must be proficient in providing information on non-prescription products, natural health products, and on non-pharmacological measures to enable patients to receive the intended benefit of the therapies, whereas physicians are far more focused on the diagnosis and prescription therapies,” she says.

Pharmacists can identify patients who could benefit from probiotics

Both Nakhla and Skokovic-Sunjic emphasize that pharmacists frequently identify people who could potentially benefit from self-care products, even if they don’t come in looking for them.

Nakhla mentions the probiotic guide authored by Skokovic-Sunjic, and how it helps pharmacists provide helpful solutions to common problems that present in the community. “I think a good strategy is looking at the conditions listed in the probiotic guide and the subsequent products indicated for use for them, and then work backwards to try to identify patients who may benefit from the listed therapies, rather than just wait for them to present asking you questions.”

Pharmacists are in a position to encourage prevention.

“Pharmacy has historically focused on providing reactive healthcare rather than proactive or preventative care,” says Nakhla. But this has recently changed, with a growing emphasis on preventing chronic disease through ongoing health maintenance and self-care strategies. She cites pharmacists as qualified health professionals who encounter many generally healthy people throughout the course of their day, and who are therefore well-positioned to advise the public on how to remain healthy.

Skokovic-Sunjic gives some examples: “If the consumer will be travelling, we might suggest a specific probiotic to prevent traveller’s diarrhea. Or if we are coming to the cold and flu season, we may recommend a product they can take to reduce the risk of developing common infectious diseases.”

Pharmacists can conduct brief or lengthy assessments before providing recommendations.

Skokovic-Sunjic says, “A pharmacist can provide specific recommendations that could really make a big difference in the patient’s experience by quickly asking a few targeted questions. This strategy may save the patient time, money, frustration and sub-optimal health outcomes. When consumers self-select inappropriate products, they will not experience benefits they seek. Determined to choose a natural product, some consumers will try a second or even third product but will not get the symptom relief they are looking for. An unintended consequence of this is that the patient may dismiss the probiotics as ineffective not because they did not work, but because it was the wrong product for the desired effect.”

Brief assessment questions are especially important for probiotics, she adds, because specificity can ‘make or break’ how useful they are to an individual. “In my consultations with patients, I quite often include questions about bowel movements and I know they are questioning why I am asking. Understanding gut function can be extremely helpful in providing appropriate probiotic recommendations.”

Pharmacists can help people understand the concept of ‘evidence-based’.

Nakhla acknowledges it’s difficult for the average person to confront a shelf of probiotic products and delineate between the ones that have evidence backing their use, and the ones that do not. “That’s where I really think a pharmacist needs to intervene and to help them balance out the pros and the cons,” she says.

“If patients are looking for a probiotic to relieve a specific symptom, then looking for an evidence-based recommendation for that specific symptom is needed,” says Skokovic-Sunjic. “If they pick something that’s not supported by evidence, it may not provide symptom relief or the benefit they expect. This may be in addition to wasted funds and mounting frustration.”

Thus, pharmacists are in a unique position to contribute to enhanced awareness about efficacy and “evidence-based self-care” as they explain these concepts to consumers at the point of sale.

 

Given all the potential ways for pharmacists to guide consumer decisions about probiotics, both Skokovic-Sunjic and Nakhla agree that keeping up on the latest probiotic evidence is of high importance.

Through ISAPP’s new efforts to engage with pharmacists, the organization plans to gauge how pharmacists in various parts of the world approach probiotic recommendations, and to support the ‘best case scenario’ of pharmacists providing evidence-based information about probiotics directly to consumers.

Sign up here for ISAPP’s newsletter for pharmacists.

Follow up from ISAPP webinar – Probiotics, prebiotics, synbiotics, postbiotics and fermented foods: how to implement ISAPP consensus definitions

By Mary Ellen Sanders PhD, Executive Science Officer, ISAPP

On the heels of the most recent ISAPP consensus paper – this one on postbiotics – ISAPP sponsored a webinar for industry members titled Probiotics, prebiotics, synbiotics, postbiotics and fermented foods: how to implement ISAPP consensus definitions. This webinar featured short presentations outlining definitions and key attributes of these five substances. Ample time remained for the 10 ISAPP board members to field questions from attendees.

When considering the definitions, it’s important to remember that the definition is a starting point – not all criteria can be included. Using the probiotic definition as an example, Prof. Colin Hill noted that the definition is only 15 words – Live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. This is a useful definition, stipulating the core characteristics of a probiotic. However, important criteria such as safety and identity are not specified in the definition yet are clearly delineated in the full paper on probiotics.

Several interesting topics emerged from this discussion, which will be explored in future blog posts. These include:

  • What is meant by host health? Microbe mediated benefits are numerous. But not all benefits are a benefit to host health. Benefits for user appearance, pets and potentially livestock may be measurable, economically important and desirable, but may not encompass ‘host health’.
  • What types of endpoints are appropriate for studies to meet the requirement of a health benefit? Endpoints that indicate improved health (such as symptom alleviation, reduced incidence of infections or quality of life measures) are targeted. Some physiological measures that may be linked to health (such as increased fecal short chain fatty acids or changes in microbiota composition) may not be sufficient.
  • What are the regulatory implications from these definitions? As suggested by the National Law Review article on the ISAPP consensus definitions, attorneys are interested in the scientific positions on how these terms are defined and characterized. Further, some regulatory actions – such as by Codex Alimentarius in defining probiotics – are underway. ISAPP is open to suggestions about the best way to communicate these definitions to regulators.
  • Is any follow-up by ISAPP to these papers anticipated in order to clarify criteria and provide simple guidance to their implementation?

Simple guidance to these substances can be found in the infographics: probiotics, probiotic criteria, prebiotics, fermented foodshow are probiotic foods and fermented foods different, synbiotics, and postbiotics. As mentioned above, watch for blog updates on implementation of the definitions for different stakeholder groups.

The recording of this webinar is available here under password protection for ISAPP industry members only.

Related information:

Consensus panel papers, all published in Nature Reviews Gastroenterology and Hepatology:

A roundup of the ISAPP consensus definitions: probiotics, prebiotics, synbiotics, postbiotics and fermented foods

 

 

 

 

The Human Mycobiome: An ISAPP mini-symposium

ISAPP announces an open registration mini-symposium on the human mycobiome.

Although the contribution of the intestinal microbiome in human physiology is well-studied, the specific role of intestinal fungi, the gut mycobiome, is not well understood. Yet they may play an important role in shaping host development and health. For example, the evidence that fungi are involved in development of chronic inflammatory diseases is building. Further, a healthy gut microbiome is likely a major line of defense against the detrimental spread of fungi from the intestinal environment to other parts of the body, or unwanted establishment of fungi in the gut itself. This mini-symposium features six short lectures that will explore different aspects of the human mycobiome, including research, clinical and industry perspectives.

Mini-symposium schedule, July 1, 2021

10:00-10:05 AM EDT Welcome. Eamonn Quigley/Mary Ellen Sanders ISAPP
10:05-10:25 Overview of the human mycobiome. Pauline Scanlan University College Cork, Ireland
10:25-10:45

 

Characterizing gut mycobiota from healthy adults: conventional vs vegetarian diets. Heather Hallen-Adams University of Nebraska – Lincoln
10:45-11:05 Gut mycobiota in immunity and IBD. Iliyan D Iliev Cornell University, Ithaca, NY
11:05-11:25 Mycobiome of infants in a type-1 diabetes prospective cohort.  Joseph Petrosino Baylor College of Medicine

Houston, TX

11:25-11:35 A clinician’s perspective on gut fungi. Eamonn Quigley Houston Methodist,

Weill Cornell Medical College, TX

11:35-11:40 Importance of the mycobiome: industry perspective. Frank Schuren TNO, Microbiology & Systems Biology, The Netherlands
11:40-noon Q&A

The webinar was held on July 1, 2021 — see the recording here:

A roundup of the ISAPP consensus definitions: probiotics, prebiotics, synbiotics, postbiotics and fermented foods

By Dr. Mary Ellen Sanders, PhD, ISAPP Executive Science Officer

ISAPP has long recognized the importance of precise definitions of the ‘biotic’ family of terms. As a scientific organization working to advance global knowledge about probiotics, prebiotics, synbiotics, postbiotics and fermented foods, we believe carrying out rigorous scientific studies—and comparing one result to another—is more difficult if we do not start with a clear definition of what we are studying.

Over the past 8 years, ISAPP has endeavored to bring clarity to these definitions for scientists and other stakeholders. ISAPP board members have met with other top experts representing multiple perspectives and specialties in the field to develop precise, useful and appropriate definitions of the terms probiotics, prebiotics, synbiotics, postbiotics and fermented foods. The definitions of these first four terms have all entailed the requirement that the substance be shown to confer a health benefit in the target host. Fermented foods have multitudes of sensorial, nutritional and technological benefits, which drive their utility. A health benefit is not required.

The problem with health benefits

The definitions provide significant advantages for the scientific community in terms of clarity but complexity arises when the same definitions are accepted by regulatory agencies. This requirement for a health benefit as part of the probiotic definition has been rigorously implemented in the European Union. Currently, with the exception of a few member states, the term probiotic is prohibited. The logic is that since a health benefit is inherent to the term probiotic and since there are no approved health claims for probiotics in the EU*, the term ‘probiotic’ is seen to be acting as a proxy for a health claim. This has frustrated probiotic product companies who believe they have met the scientific criteria for probiotics, yet cannot identify their product as a probiotic in the marketplace because they have not received endorsement of their claims by the EU. This is not an issue resulting from an unclear definition, since probiotics surely should provide a health benefit, but rather from a lack of agreement as to what level of evidence is sufficient to substantiate a health benefit.

ISAPP remains committed to the importance of requiring a health benefit for the ‘biotic’ family of terms (outlined in the table below). It’s clear that all of these definitions are meaningless unless the requirement that they confer a health benefit is considered as essential by all stakeholders. One could reasonably discuss whether the required levels of evidence for foods and supplements are too high in some regulatory jurisdictions, but the value of these substances collapses in the absence of a health benefit.

Summary of ISAPP consensus definitions

With the publication of the most recent ISAPP consensus paper, this one on postbiotics, I offer a summary below of the five consensus definitions published by ISAPP. Each definition is part of a comprehensive paper resulting from focused discussions among experts in the field and published in Nature Reviews Gastroenterology and Hepatology (NRGH). These papers are among the top most viewed of all time on the NRGH website and are increasingly cited by scientists and regulators.

Table. Summary of ISAPP Consensus Definitions of the ‘Biotics’ Family of Substances. Probiotics, prebiotics, synbiotics and postbiotics have in common the requirement for a health benefit. They may apply to any target host, any regulatory category and must be safe for their intended use. Fermented foods fall only under the foods category and no health benefit is required.

Definition Key features of the definition Reference
Probiotics Live microorganisms that, when administered in adequate amounts, confer a health benefit on the host Grammatical correction of the 2001 FAO/WHO definition.

No mechanism is stipulated by the definition.

 

Hill et al. 2014
Prebiotics A substrate that is selectively utilized by host microorganisms conferring a health benefit Prebiotics are distinct from fiber. Beneficial impact on resident microbiota and demonstration of health benefit required in same study. Gibson et al. 2017
Synbiotics A mixture comprising live microorganisms and substrate(s) selectively utilized by host microorganisms that confers a health benefit on the host Two types of synbiotics defined: complementary and synergistic. Complementary synbiotics comprise probiotic(s) plus prebiotic(s), meeting requirements for criteria for each. Synergistic synbiotics comprise substrate(s) selectively utilized by co-administered live microbe(s), but independently, the components do not have to meet criteria for prebiotic or probiotic. Swanson et al. 2020
Postbiotics Preparation of inanimate microorganisms and/or their components that confers a health benefit on the host Postbiotics are prepared from live microbes that undergo inactivation and the cells or cellular structures must be retained. Filtrates or isolated components from the growth of live microbes are not postbiotics. A probiotic that is killed is not automatically a postbiotic; the preparation must be shown to confer a health benefit, as well as meet all other criteria for a postbiotic. Salminen et al. 2021
Fermented Foods Foods made through desired microbial growth and enzymatic conversions of food components Fermented foods are not the same as probiotics. They are not required to have live microbes characterized to the strain level nor have evidence of a health benefit. Types of fermented foods are many and are specific to geographic regions. Compared to the raw foods they are made from, they may have improved taste, digestibility, safety, and nutritional value. Marco et al. 2021

 

 

*Actually, there is one approved health claim in the EU for a probiotic: Scientific Opinion on the substantiation of health claims related to live yoghurt cultures and improved lactose digestion (ID 1143, 2976) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

 

Further reading: Defining emerging ‘biotics’

Do new product formats need new clinical trials?

By Marla Cunningham​, Metagenics Global R&D Innovation Manager and 2021 ISAPP Industry Advisory Committee representative

Let’s assume a hypothetical clinical study has been published with positive impacts of a yoghurt containing Lacticaseibacillus rhamnosus strain XYZ in children with atopic dermatitis. If the strain is now to be incorporated into a fruit drink, at the clinically trialled dose throughout shelf life, can it be expected to have the same health benefits? Can the probiotic yoghurt study provide primary support of efficacy claims on the probiotic fruit drink? Such a question is highly relevant to the challenges that food and supplement manufacturers within the ISAPP community face daily in product development.

This important scientific and regulatory question is addressed in a new ISAPP-driven collaborative article, originating from opinions and data presented at the industry-organised Learning Forum at the 2019 ISAPP annual meeting in Antwerp. The paper, published online April 21 in Trends in Food Science and Technology, reviewed preclinical and clinical evidence for an impact of product matrix on functionality of probiotics and prebiotics.

The article notes it is well-recognised that heat, pH and moisture are key factors causing degradation in probiotics and prebiotics, and such factors currently weigh heavily in formulation design and quality assurance processes for these products. Beyond such impacts on degradation, some evidence suggests that ingredients in the product matrix can affect probiotic and prebiotic functionality in vitro, for example via the binding of proteins or carbohydrates to structural components of prebiotics or altering activity of effector molecules on probiotics.

However, clinical trials do not provide convincing evidence that observed preclinical interactions are significant in vivo. Head-to-head clinical trials comparing product formats are rare, meaning that direct evidence that product formats can influence a clinical endpoint is lacking. To address this gap, researchers are encouraged to consider comparing different matrixes in future clinical trials. Yet, while differences in study factors (such as populations, interventions and doses) limit conclusions that can be drawn from comparing across clinical studies, meta-analyses in general suggest a robustness of effect across a broad range of delivery matrices for given clinical endpoints.

Preclinical assessments are useful, but limited. Attempts to replicate findings from highly controlled preclinical experiments often fail because preclinical assessments cannot capture the complexity of the physiology or the individual factors inherent to the human subject.  It makes sense that any impact of physicochemical interaction between probiotics or prebiotics with a product matrix may not be revealed in vivo. If we consider the almost infinite number of variations that could make up a study subject’s (or consumer’s) diet, probiotics and prebiotics are in fact being delivered in a variety of matrices every day, with substantially greater potential for physiochemical interactions in the digestive tract outside of product formulation variables. Add to this interindividual differences in human physiology and microbiome, and the overall impact of product formulation differences on the expression of a clinical effect in an end consumer may be smaller still.

This broader perspective suggests that even if it were ethically and practically possible, unrestrained investment into the repetition of clinical trials for each new product format may not be the answer to provide a high degree of confidence for translation of clinical trial evidence to any given consumer. Instead, research dollars may be better spent in the short term on mechanistic and clinical studies investigating the relative impact of factors determining individual response to probiotic and prebiotic intervention, including factors intrinsic to the host as well the product formulation.

Nonetheless, it is critical that any extrapolation of evidence across product formats is supported by a solid scientific rationale. As such, the article provides recommendations for a practical path forward to demonstrate essential equivalence between product formats, utilising in vitro and in vivo tests, and clinical trials where justified. Such an approach is intended to provide reasonable assurance of scientific substantiation and may also go some way to meeting the expectations of regulatory authorities across the globe (reviewed within).

The open access article can be found here.

 

Behind the publication: Understanding ISAPP’s new scientific consensus definition of postbiotics

A key characteristic of a probiotic is that it remains alive at the time of consumption. Yet scientists have known for decades that some non-living microorganisms can also have benefits for health: various studies (reviewed in Ouwehand & Salminen, 1998) have compared the health effects of viable and non-viable bacteria, and some recent investigations have tested the health benefits of pasteurized bacteria (Depommier et al., 2019).

Since non-viable microorganisms are often more stable and convenient to include in consumer products, interest in these ‘postbiotic’ ingredients has increased over the past several years. But before now, the scientific community had not yet united around a definition, nor had it precisely delineated what falls into this category.

An international group of scientists from the disciplines of probiotics and postbiotics, food technology, adult and pediatric gastroenterology, pediatrics, metabolomics, regulatory affairs, microbiology, functional genomics, cellular physiology and immunology met in 2019 to discuss the concept of postbiotics. This meeting led to a recently published consensus paper, including this definition: “a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host”.

Thus, a postbiotic must include some non-living microbial biomass, whether it be whole microbial cells or cell components.

Below is a Q&A with four of the paper’s seven ISAPP-linked authors, who highlight important points about the definition and explain how it will lay the groundwork for better scientific understanding of non-viable microbes and health in the years ahead.

Why was the concept of postbiotics needed?

Prof. Seppo Salminen, University of Turku, Finland:

We have known for a long time that inactivated microorganisms, not just live ones, may have health effects but the field had not coalesced around a term to use to describe such products or the key criteria applicable to them. So we felt we needed to assemble key experts in the field and provide clear definitions and criteria.

Further, novel microbes (that is, new species hitherto not used in foods) in foods and feeds are being introduced as live or dead preparations. The paper highlights regulatory challenges and for safety and health effect assessment for dead preparations of microbes.

Can bacterial metabolites be postbiotics?

Prof. Gabriel Vinderola, National University of Litoral, Argentina:

Postbiotics can include metabolites – for example, fermented products with metabolites and microbial cells or their components, but pure metabolites are not postbiotics.

Can you expand on what is not included in the category of postbiotics?

Dr. Mary Ellen Sanders, ISAPP Executive Science Officer, USA:

The term ‘postbiotic’ today is sometimes applied to components derived from microbial growth that are purified, so no cell or cell products remain. The panel made the decision that such purified, microbe-derived substances (e.g. butyrate) should be called by their chemical names and that there was no need for a single encompassing term for them. Some people may be surprised by this. But microbe-derived substances include a whole host of purified pharmaceuticals and industrial chemicals, and these are not appropriately within the scope of ‘postbiotics’.

For something to be a postbiotic, what kinds of microorganisms can it originate from?

Prof. Gabriel Vinderola, National University of Litoral, Argentina:

A postbiotic must derive from a living microorganism on which a technological process is applied for life termination (heat, high pressure, oxygen exposure for strict anaerobes, etc). Viruses, including bacteriophages, are not considered living microorganisms, so postbiotics cannot be derived from them.

Safety and benefits must be demonstrated for its non-viable form. A postbiotic does not have to be derived from a probiotic (see here for a list of criteria required for a probiotic). So the microbe used to derive a postbiotic does not need to demonstrate a health benefit while alive. Further, a probiotic product that loses cell viability during storage does not automatically qualify as a postbiotic; studies on the health benefit of the inactivated probiotic are still required.

Vaccines or substantially purified components and products (for example, proteins, peptides, exopolysaccharides, SCFAs, filtrates without cell components and chemically synthesized compounds) would not qualify as postbiotics in their own right, although some might be present in postbiotic preparations.

What was the most challenging part of creating this definition?

Dr. Mary Ellen Sanders, ISAPP Executive Science Officer, USA:

The panel didn’t want to use the term ‘inactive’ to describe a postbiotic, because clearly even though they are dead, they retain biological activity. There was a lot of discussion about the word ‘inanimate’, as it’s not so easy to translate. But the panel eventually decided it was the best option.

 Does this definition encompass all postbiotic products, no matter whether they are taken as dietary supplements or drugs?

Prof. Hania Szajewska, Medical University of Warsaw, Poland:

Indeed. However, as of today, postbiotics are found primarily in foods and dietary supplements.

Where can you currently find postbiotics in consumer products, and what are their health effects?

Prof. Hania Szajewska, Medical University of Warsaw, Poland:

One example is specific fermented infant formulas with postbiotics which have been commercially available in some countries such as Japan and in Europe, South America, and the Middle East for years. The postbiotics in fermented formulas are generally derived from fermentation of a milk matrix by Bifidobacterium, Streptococcus, and/or Lactobacillus strains.

Potential clinical effects of postbiotics include prevention of common infectious diseases such as upper respiratory tract infections and acute gastroenteritis. Moreover, fermented formulas have the potential to improve some digestive symptoms or discomfort (e.g. colic in infants). In addition, there is some rationale for immunomodulating, anti-inflammatory effects which may potentially translate into other clinical benefits, such as improving allergy symptoms. Still, while these effects are likely, more well-designed, carefully conducted trials are needed.

What do we know about postbiotic safety?

Dr. Mary Ellen Sanders, ISAPP Executive Science Officer, USA:

Living microbes have the potential, especially in people with compromised health, to cause an infection. But because the microbes in postbiotics are not alive, they cannot cause infections. This risk factor, then, is removed from these preparations. Of course, the safety of postbiotics for their intended use must be demonstrated, but infectivity should not be a concern.

What are the take-home points about the postbiotics definition?

Prof. Seppo Salminen, University of Turku, Finland:

Postbiotics, which encompass inanimate microbes with or without metabolites, can be characterized, are likely to be more stable than live counterparts and are less likely to be a safety concern, since dead bacteria and yeast are not infective.

Read the postbiotic definition paper here.

See the press release about this paper here.

View an infographic on the postbiotic definition here.

See another ISAPP publication on postbiotics here.