Posts

EFSA’s QPS committee issues latest updates

By Bruno Pot, PhD, Vrije Universiteit Brussel and Mary Ellen Sanders, PhD, Executive Science Officer, ISAPP

On July 2nd, the European Food Safety Authority (EFSA) published the 12th update of the qualified presumption of safety (QPS) list, a list of safe biological agents, recommended for intentional addition to food or feed, covering notifications from October 2019-March 2020. It was good news to all stakeholders to see that EFSA discussed the recent taxonomic changes within the genus Lactobacillus (see ISAPP blog here) as well as addressed some microbes being considered as potential, novel probiotics.

What is QPS?

In 2005 EFSA established a generic approach to the safety assessment of microorganisms used in food and feed, prepared by a working group of the former Scientific Committee on Animal Nutrition, the Scientific Committee on Food and the Scientific Committee on Plants of the European Commission. This group introduced the concept of “Qualified Presumption of Safety” (QPS), which described the general safety profile of selected microorganisms. The QPS process was mainly developed to provide a generic pre‐evaluation procedure harmonized across the EU to support safety risk assessments of biological agents performed by EFSA’s scientific panels and units. A QPS assessment is performed by EFSA following a market authorisation request of a regulated product requiring a safety assessment. Importantly, in the QPS concept, a safety assessment of a defined taxonomic unit is performed independently of the legal framework under which the application is made in the course of an authorisation process.

QPS status is granted to a taxonomic unit (most commonly a species), based on reasonable evidence. A microorganism must meet the following four criteria:

1.       Its taxonomic identity must be well defined.

2.       The available body of knowledge must be sufficient to establish its safety.

3.       The lack of pathogenic properties must be established and substantiated (safety).

4.       Its intended use must be clearly described.

Any safety issues, noted as ‘qualifications’, that are identified for a species assessed under QPS must be addressed at the strain or product level. Microorganisms that are not well defined, for which some safety concerns are identified or for which it is not possible to conclude whether they pose a safety concern to humans, animals or the environment, are not considered suitable for QPS status and must undergo a full safety assessment. One generic qualification for all QPS bacterial taxonomic units is the need to establish the absence of acquired genes conferring resistance to clinically relevant antimicrobials (EFSA, 2008).

If an assessment concludes that a species does not raise safety concerns, it is granted “QPS status”. Once EFSA grants a microorganism QPS status, it is included on the “QPS list” and no microorganism belonging to that group needs to undergo a full safety assessment in the European Union.

The QPS list is re‐evaluated every 6 months by the EFSA Panel on Biological Hazards based on three “Terms of Reference” (ToR)*. This evaluation is based on an extensive literature survey covering the four criteria mentioned above.

What happened to the genus Lactobacillus?

In April 2020, based on a polyphasic approach involving whole genome sequencing of more than 260 species of the former genus Lactobacillus, the genus was reclassified into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the L. delbrueckii group, the earlier described genus Paralactobacillus as well as 23 novel genera, named Acetilactobacillus, Agrilactobacillus, Amylolactobacillus, Apilactobacillus, Bombilactobacillus, Companilactobacillus, Dellaglioa, Fructilactobacillus, Furfurilactobacillus, Holzapfelia, Lacticaseibacillus, Lactiplantibacillus, Lapidilactobacillus, Latilactobacillus, Lentilactobacillus, Levilactobacillus, Ligilactobacillus, Limosilactobacillus, Liquorilactobacillus, Loigolactobacilus, Paucilactobacillus, Schleiferilactobacillus, and Secundilactobacillus. Read more in the original paper here or on the ISAPP blog here).

These name changes could have considerable economic, scientific and regulatory consequences, as discussed during an expert workshop organised by the Lactic Acid Bacteria Industrial Platform (LABIP). One of the points discussed during this workshop was the possible implication of the name change on the QPS list in Europe and the FDA’s GRAS list in the USA.

What did EFSA do?

In a 42-page document, which can be found here, amongst others, the species of the former genus Lactobacillus that were already listed on the QPS list, have been formally renamed at the genus level. The species names remained the same, as the taxonomic revision from April 2020 only affected the genus name. As a result, the genus names of 37 former Lactobacillus species on the QPS were updated, and now span 13 different genera. Table 1 delineates these nomenclature updates.

Table 1: Taxonomic revision of the 37 species formerly of the Lactobacillus genus present on the QPS list (published here).

Earlier denomination                                                      Updated denomination
Lactobacillus acidophilus                     Lactobacillus acidophilus
Lactobacillus alimentarius Companilactobacillus alimentarius
Lactobacillus amylolyticus Lactobacillus amylolyticus
Lactobacillus amylovorus Lactobacillus amylovorous
Lactobacillus animalis Ligilactobacillus animalis
Lactobacillus aviarius Ligilactobacillus aviarius
Lactobacillus brevis Levilactobacillus brevis
Lactobacillus buchneri Lentilactobacillus buchneri
Lactobacillus casei Lacticaseibacillus casei
Lactobacillus collinoides Secundilactobacillus collinoides
Lactobacillus coryniformis Loigolactobacillus coryniformis
Lactobacillus crispatus Lactobacillus crispatus
Lactobacillus curvatus Latilactobacillus curvatus
Lactobacillus delbrueckii Lactobacillus delbrueckii
Lactobacillus dextrinicus Lapidilactobacillus dextrinicus
Lactobacillus diolivorans Lentilactobacillus dioliovorans
Lactobacillus farciminis Companilactobacillus farciminis
Lactobacillus fermentum Limosilactobacillus fermentum
Lactobacillus gallinarum Lactobacillus gallinarum
Lactobacillus gasseri Lactobacillus gasseri
Lactobacillus helveticus Lactobacillus helveticus
Lactobacillus hilgardii Lentilactobacillus hilgardii
Lactobacillus johnsonii Lactobacillus johnsonii
Lactobacillus kefiranofaciens Lactobacillus kefiranofaciens
Lactobacillus kefiri Lentilactobacillus kefiri
Lactobacillus mucosae Limosilactobacillus mucosae
Lactobacillus panis Limosilactobacillus panis
Lactobacillus paracasei Lacticaseibacillus paracasei
Lactobacillus paraplantarum Lactiplantibacillus paraplantarum
Lactobacillus pentosus Lactiplantibacillus pentosus
Lactobacillus plantarum Lactiplantibacillus plantarum
Lactobacillus pontis Limosilactobacillus pontis
Lactobacillus reuteri Limosilactobacillus reuteri
Lactobacillus rhamnosus Lacticaseibacillus rhamnosus
Lactobacillus sakei Latilactobacillus sakei
Lactobacillus salivarius Ligilactobacillus salivarius
Lactobacillus sanfranciscensis Fructilactobacillus sanfranciscensis

EFSA further specifies that “To maintain continuity within the QPS list, all the strains belonging to a previous designed Lactobacillus species will be transferred to the new species. Both the previous and new names will be retained”. (Emphasis added.)

Impact of the QPS update on the probiotic field

The probiotic field can also take note of this current update for its review of two ‘next generation’ probiotic species evaluated for possible QPS status, Akkermansia muciniphila and Clostridium butyricumAkkermansia muciniphila has been actively researched as a probiotic to help manage metabolic syndrome (Depommier et al. 2019). A probiotic preparation containing both Akkermansia muciniphila and Clostridium butyricum has been studied in a randomized controlled trial for postprandial glucose control in subjects with type 2 diabetes (Perraudeau et al 2020). The committee’s decisions:

  • Akkermansia muciniphila is not recommended for QPS status due to safety concerns;
  • Clostridium butyricum is not recommended for QPS status because some strains contain pathogenicity factors; this species is excluded for further QPS evaluation.

The publication of the next scientific opinion updating the QPS list is planned for December 2020, based on the 6-month assessments carried out by the BIOHAZ Panel.

Conclusion

Due to its scientific rigor and continuous updates, the EFSA QPS efforts provide useful perspective for the global scientific community on safety of candidate microbes for use in foods. Their embrace of the new taxonomic status of lactobacilli signals to other stakeholders that it is time to start the process of doing the same. Further, their assessment of species being proposed and studies as ‘next generation’ probiotics is an important reminder that a microbe’s status as a human commensal is not a guarantee of its safety for use in foods.

 

*QPS Terms of Reference (ToR) (quoted from here):

ToR 1: Keep updated the list of biological agents being notified in the context of a technical dossier to EFSA Units such as Feed, Pesticides, Food Ingredients and Packaging (FIP) and Nutrition, for intentional use directly or as sources of food and feed additives, food enzymes and plant protection products for safety assessment.

ToR 2: Review taxonomic units previously recommended for the QPS list and their qualifications when new information has become available. The latter is based on a review of the updated literature aiming at verifying if any new safety concern has arisen that could require the removal of the taxonomic unit from the list, and to verify if the qualifications still efficiently exclude safety concerns.

ToR 3: (Re)assess the suitability of new taxonomic units notified to EFSA for their inclusion in the QPS list. These microbiological agents are notified to EFSA and requested by the Feed Unit, the FIP Unit, the Nutrition Unit or by the Pesticides Unit.

 

60 Minutes’ 13 minutes on probiotics

By Mary Ellen Sanders, PhD, ISAPP Executive Science Officer 

On June 28, 60 Minutes aired a 13-minute segment about probiotics titled, “Do Probiotics Actually Do Anything?” Unfortunately the media segment did not provide listeners with a nuanced perspective.

‘Probiotics’ were treated as if they were one entity, ignoring the best approach to addressing the topic of what probiotics do: evaluate the evidence for specific strains, doses and endpoints, and then make a conclusion based on the totality of the evidence. They would have found that many experts agree that actionable evidence exists for certain probiotics to prevent antibiotic associated diarrhea (here, here), prevent upper respiratory tract infections (here), prevent morbidity and mortality associated with necrotizing enterocolitis (here,), treat colic (here), and treat acute pediatric gastroenteritis (here). (For an overall view of evidence, see here.)

Importantly, not all retail probiotics have evidence (at least evidence that is readily retrievable, see here and here). But that does not mean that none do.

The 60 Minutes segment also highlighted questions about probiotic safety. No intervention is without risk, and no one claims as much for probiotics. Prof. Dan Merenstein, MD, just one clinical investigator of probiotics, has collected over 20,000 pediatric clinical patient days’ worth of safety data over the past eight years of clinical investigation, with no indication of safety concerns. In fact, participants in the placebo group generally have more adverse events than in the probiotic groups. But importantly, the safety standard for probiotics was mischaracterized by 60 Minutes. According to Dr. James Heimbach, a food safety expert (not interviewed in the segment) who has conducted 41 GRAS determinations on probiotics, over 25 of them notified to the FDA, he objects to the statement that GRAS is a lower safety bar than a drug. He clarifies:

“The safety standard that applies to food additives and GRAS substances, “reasonable certainty of no harm,” is a far higher standard than that applying to drugs. Drugs are judged against a risk/benefit standard, which can potentially allow quite dangerous drugs on the market provided they offer a significant benefit. The safety standard for drugs also applies only to prescribed doses for specific individuals over prescribed durations. The food-additive/GRAS substance standard, on the other hand, requires safety at any biologically plausible level of intake, for any person (child, adult, elderly; pregnant; etc.), over a lifetime. And it is a risk-only standard—no potential benefit is allowed to override the “reasonable certainty of no harm” standard. Additionally, in the case of GRAS substances (which includes most probiotics), the evidence of safety must be published in the peer-reviewed scientific literature and be widely accepted by the scientific community as well as by government regulators.”

Finally, the story implied that benefits people claim for themselves when using probiotics are due to a placebo effect. This ignores the many properly controlled studies directly comparing the effects of specific probiotics to placebos. A positive trial on probiotics, such as observed in this recent trial on irritable bowel syndrome symptoms (here) and in most trials included in Cochrane meta-analyses on prevention of C. difficile-associated diarrhea (here), means that positive effects were observed beyond any placebo effect. The placebo effect is real, equally applicable to probiotics and drugs, but as with all clinically evaluated substances, properly controlled trials control for this effect.

The probiotic field has come a long way over the past 20 years with regard to number and quality of clinical trials. In that time, well-done systematic reviews of the evidence have found benefits for specific probiotics for specific conditions, while also finding a lack of evidence for beneficial effects in other contexts. There are of course well-conducted clinical trials that have failed to demonstrate benefit (here, here, here). This should not be equated to mean that probiotics do not do anything.

Many challenges remain for improving the quality of the evidence across the wide range of different strains, doses, endpoints and populations. More clinical research needs to be conducted in a manner that minimizes bias and is reported according to established standards. Confidence in the quality of commercial products could be improved by industry adopting third party verification (here), and the quality of products targeting compromised populations need to be fit for purpose (here). Companies should stop using the term ‘probiotic’ on products that have no evidence warranting that description. We need to understand much better how a person’s individual situation, such as diet, microbiome, use of medications and fitness, impact the ability of a probiotic to promote health. Much remains to be learned in this evolving and exciting field. As Dr. Merenstein says, “The key question is not, ‘Do probiotics actually do anything?’, as that is easily answered ‘yes’ when you look at robust placebo-controlled trials of specific probiotics. Better questions are ‘Which probiotics do anything, and for what?’”

Further reading:

Misleading press about probiotics: ISAPP responses

ISAPP take-home points from American Gastroenterological Association guidelines on probiotic use for gastrointestinal disorders

New publication gives a rundown on probiotics for primary care physicians

Safety and efficacy of probiotics: Perspectives on JAMA viewpoint

The FDA’s view on the term probiotics, part 1

By James Heimbach, Ph.D., F.A.C.N., JHEIMBACH LLC, Port Royal, VA

James Heimbach, food and nutrition regulatory consultant

Over the past 20 years as a food and nutrition regulatory consultant, I have filed about 40 GRAS notices with the United States Food and Drug Administration (FDA), including 15 strains of probiotic bacteria and 5 prebiotics. This fall I submitted notices dealing with 4 strains of bacteria and on January 16 received a telephone call from FDA that surprised me and initially infuriated me, but which I have come to understand.

The essence of the call was that FDA was declining to file my probiotic notices because the notices had identified the subject bacteria as “probiotics” or “probiotic bacteria.” FDA suggested that I resubmit without calling the subject microorganisms “probiotics.”

 

 

As I said, I was surprised and frustrated, and I still would prefer that when FDA makes a policy swerve they would do it in a way that does not make extra work for me and delay my clients’ ability to get to market in a timely manner.

What I have had to do here is remove my advocate’s hat and put on my regulator’s hat. (I worked for FDA for a decade . . . long ago [1978 to 1988], but I still remember how to think like a regulator.) And here is the issue. Recall that GRAS is concerned with safety, not efficacy (generally recognized as safe, or GRAS), and the information provided in a GRAS notice is focused on safety (although benefits may be more-or-less incidentally covered). The reviewers at FDA are charged with assessing whether the notice provides an adequate basis to conclude that there is a reasonable certainty that no harm will result from the intended use. They are not charged, and they are not equipped, to evaluate what benefits ingestion of the substance or microorganism might provide. So they are not in a position to say whether the subject microorganism will “confer a health benefit on the host,” which is to say, they are not in a position to say whether or not it may be regarded as a probiotic. Remember, probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (Hill et al. 2014).

Given that the FDA reviewers cannot say whether the notified microorganism is rightly called a probiotic, they are reluctant to sign off that they have no questions about a notice that calls it one. Regulatory agencies have to be careful; things sometimes come back to haunt them. Those who have been following FDA’s GRAS-notice response letters for a couple of decades will be aware that the agency is putting more and more disclaimers into the letters—about standards of identity, about potential labeling issues, about benefits shown in clinical trials, and about Section 201(II) of the FD&C Act.

One concern that FDA likely has is that if some issue comes up in the future regarding a claim made for benefits from use of a product containing the subject bacterium, someone may make the argument that FDA had accepted that the strain is indeed a probiotic and so it presumably confers probiotic benefits. In the case of probiotics, there are also some internal FDA politics. As ISAPP meeting attendees may already be aware, FDA’s Center for Biologics Evaluation and Research (CBER) would like to claim jurisdiction over all administration of live microorganisms, and the Center for Food Safety and Applied Nutrition (CFSAN) does not seem willing to have a confrontation.

I suspect that a similar situation obtains with the term “prebiotic.” Although I have filed a number of GRAS notices for prebiotics, they haven’t been called that; they have been called fructooligosaccharides, or tamarind seed polysaccharide, or polydextrose, or 2’-O-fucosyllactose. I don’t know how FDA would respond if a GRAS determination were filed with the substance labeled as a prebiotic.

So, I’ve decided that my sympathies lie with FDA. Until and unless a microorganism has been confirmed by competent authority to have probiotic properties when used as intended in a GRAS notice, FDA is probably correct in rejecting its right to be labeled a probiotic. If it’s any consolation, this new position by the FDA has its origin in their acknowledgment of the official scientific definition of the word “probiotic”.

When Mary Ellen Sanders (ISAPP’s Executive Science Officer) reviewed my first draft of this note, she asked what I had in mind by “competent authority,” to which I don’t have a good answer at the present time except to insist that it is not FDA’s Division of GRAS Notice Review. Thirty years ago, when I was at FDA, I was in the Office of Food Science and Nutrition, and that office was charged with making determinations of that type (although I don’t recall anything about probiotics coming before us). But FDA no longer has such an office. Until it does, or until it agrees on another source of authority on designation of microorganisms as non-CBER-domain probiotics, I suspect that CFSAN will continue to be very cautious in this area.

Read part 2 of this blog series here.