Posts

Using probiotics to support digestive health for dogs

By Kelly S. Swanson, PhD, The Kraft Heinz Company Endowed Professor in Human Nutrition, University of Illinois at Urbana-Champaign, USA

Because dogs are considered to be members of the family by most pet owners today, their health and well-being is a top priority. As with humans, nutritional products supporting gastrointestinal health are some of the most popular. Many pets are healthy, but loose stools, constipation, and various gastrointestinal disorders and diseases such as inflammatory bowel disease and irritable bowel syndrome are common. In fact, within the pet food conversation, digestive health improvements have been the most discussed health benefits among social media discussion posts over the past 2 years (see here). Given the high interest in digestive health, it is not surprising that the canine microbiome has been of great interest over the past decade, with many recent reviews reporting on the overall composition of the gastrointestinal microbiota and how it is impacted by diet (Barko et al., 2018; Alessandri et al., 2020; Wernimont et al., 2020). Gastrointestinal microbiome changes contributing to or resulting from digestive diseases have also been documented in dogs (Redfern et al., 2017; Ziese and Suchodolski, 2021). Animals under high levels of stress or undergoing antibiotic therapy are also known to have poor stool quality and an altered gut microbiota (i.e., dysbiosis) (Pilla et al., 2020).

Dietary fibers and prebiotics are commonly used in complete and balanced diets to improve or maintain stool quality, provide laxation, and positively manipulate the microbiota of healthy animals. The use of probiotics is also popular in dogs, but the route of administration, efficacy, and reason for use is usually different than that of fiber and prebiotics. Probiotics are usually provided in the form of supplements (e.g., powders, capsules, pastes) and are most commonly used to treat animals with gastrointestinal disease rather than support the healthy condition. Live microbes are added to many dry extruded foods as ‘probiotics’, but in many cases, maintaining viability and evidence for a health benefit for dogs is lacking for these products. Such microbes would not meet the minimum criteria to be called a ‘probiotic.’ Viability is a challenge because most HACCP plans for producing complete and balanced pet foods include a kill step that inactivates all microorganisms. Therefore, inclusion must be applied post-extrusion on the outside of the kibble. Even if applied in this way, low numbers of viable organisms are common (Weese and Arroyo, 2003). Post-production inclusion is not possible for other diet formats (e.g., cans, pouches, trays). Although spore-forming bacteria that may survive the extrusion process have been of interest lately, evidence of efficacy is lacking thus far.

Picture of Simka (a Samoyed) courtesy of ISAPP board member Dr. Daniel Tancredi

Even though health benefits coming from the inclusion of live microorganisms in dog foods is not supported by the peer-reviewed literature, such evidence exists for many probiotic supplements. The clinical effects of probiotics in the prevention or treatment of gastrointestinal diseases in dogs have been reviewed recently (Schmitz and Suchodolski, 2016; Suchodolski and Jergens, 2016; Jensen and Bjornvad, 2018; Schmitz, 2021). Although some similarities exist, recent research has shown that distinct dysbiosis networks exist in dogs compared to humans (Vazquez-Baeza et al., 2016), justifying unique prevention and/or treatment strategies for dogs.

One population of dogs shown to benefit from probiotics has been those with acute idiopathic diarrhea and gastroenteritis, with a shorter time to resolution and reduced percentage of dogs requiring antibiotic administration being reported (Kelley et al., 2009; Herstad et al., 2010; Nixon et al., 2019). Probiotic administration has also been shown to benefit dogs undergoing antibiotic therapy and those engaged in endurance exercise – two conditions that alter the gastrointestinal microbiota and often lead to loose stools. In those studies, consumption of a probiotic helped to minimize gastrointestinal microbiome shifts and reduced the incidence and/or shortened the length of diarrhea (Gagne et al., 2013; Fenimore et al., 2017). Dogs diagnosed with inflammatory bowel disease have also been shown to benefit from probiotic consumption (Rossi et al., 2014; White et al., 2017). In these chronic conditions, drug therapy is almost always required, but probiotics have been shown to help normalize intestinal dysbiosis, increase tight junction protein expression, and reduce clinical and histological scores.

So what is the bottom line? Well, for dogs with a sensitive stomach and/or digestive health issues, probiotics may certainly help. Rather than relying on live microbes present in the dog’s food or adding a couple spoonfuls of yogurt to the food bowl each day, it is recommended that owners work with their veterinarian to identify a probiotic that has the best chance for success. The probiotic selected should provide an effective dose, be designed for dogs, target the specific condition in mind, and be backed by science. As summarized here, it is important to remember that all probiotics are different so the specific microorganism(s), supplement form, storage conditions, and dosage are all important details to consider.

 

Kelly Swanson joined the ISAPP board of directors in June, 2020, providing valuable expertise in animal gut health and overall health. Swanson also chaired the 2019 ISAPP-led international consensus panel on the definition of synbiotics.

ISAPP board member Prof. Dan Tancredi kindly provided pictures of Simka, pet Samoyed, for the post.

 

Precision approaches to microbiota modulation: Using specific fiber structures to direct the gut microbial ecosystem for better health

By now, hundreds of scientific articles show the differences in gut microbiota composition and function between states of health and disease, leading to the idea that gut microbiota modulation is a promising way to achieve better health. But in practice, changing the complex community of microbes in the gut has proved challenging—the gut microbiota of the average adult is remarkably stable.

When it comes to diet, non-digestible carbohydrates are the main way to provide nutritional support to microbial populations and to modulate these communities, either in composition or in function. Can these dietary fibers be used to modulate the gut microbiota in a precise manner, with the aim of inducing certain health effects?

Prof. Jens Walter of APC Microbiome Ireland addressed this topic in a plenary lecture at the ISAPP 2020 annual meeting, titled: Precision microbiome modulation through discrete chemical carbohydrate structures.

Walter sees the gut microbiota as an complex ecological community of interacting microbes that is remarkably stable in healthy adults (albeit with a high degree of inter-individual variation). In order to precisely modulate gut microbiomes through diet, scientists must consider the ecological principles that shape these communities and determine how they function.

In the lecture, Walter introduced a perspective for using discrete fiber substrates to precisely modulate gut microbiota – a framework first articulated in a 2014 paper by Hamaker and Tuncil. According to this framework, gut microbiomes can be precisely manipulated, whether to achieve a certain microbiota composition or the production of health-relevant metabolites, through the use of specific fiber structures that are aligned with microbes that have the ability to utilize them. Walter explains some of the main challenges of the framework, which relate to the vast inter-individual differences in the gut microbes that are present, and their response to fiber; and discovering the exact dose of a fiber required for reliable changes in a person’s gut microbiota.

At the core of the presentation is a study by the Walter Lab that systematically tested the framework through a human dose-response trial using resistant starches with slight differences in their chemical structure. The findings of the study, which were published this year, illustrate how this ecological concept can be successfully applied. This shows the colonic microbiota can be successfully shaped in a desired manner with discrete dietary fiber structures.

See Prof. Walter’s presentation in full here.

Are prebiotics good for dogs and cats? An animal gut health expert explains

By Kelly S. Swanson, PhD, The Kraft Heinz Company Endowed Professor in Human Nutrition, University of Illinois at Urbana-Champaign, USA

Pet dogs and cats are cherished companions. In developed countries, many households with pets treat them like family members. Similarly to humans, a high level of nutrition and veterinary care promotes health and longevity. As people become more aware of what they feed themselves and their human family, they make the same considerations for their canine and feline companions. Pet food trends have closely followed those of the human food industry over the last couple decades, with high-quality natural and organic foods gaining popularity.

One way pet food companies have enhanced their products is by incorporating functional ingredients into their formulas. Functional ingredients provide benefits beyond that of their nutrient content. One of the most popular target areas for functional ingredients is pet gastrointestinal health, with structure/function claims of “supporting digestive health”, or something similar, being quite common. Loose stools, constipation, and various gastrointestinal disorders and diseases such as inflammatory bowel diseases and irritable bowel syndrome are common in pets. The task of “poop scooping” after the dog in the park or cleaning out the cat’s litterbox provides owners with an opportunity for daily assessment of stool quality and serves as a reminder of how important diet is to gut health.

Benefits of prebiotics for pets

Many ingredients, including dietary fibers, prebiotics, probiotics, synbiotics, postbiotics, and other immunomodulators may provide gastrointestinal benefits to pets, but today we will focus on prebiotics. The most recent ISAPP expert consensus panel on prebiotics clarified that the prebiotic concept not only applies to humans, but also to companion and production animals (Gibson). Dogs and cats evolved as Carnivora, mainly consuming high-protein, high-fat diets that were low in fiber, and their short, simple gastrointestinal tracts have a limited capacity to ferment non-digestible substances. Nonetheless, they possess an active microbiota population, primarily in the colon, that may be manipulated by diet to impact health.

Most prebiotic research in pets has focused on the gastrointestinal tract. Prebiotic administration has been shown to reduce the incidence or severity of infections (Apanavicius; Gouveia), improve stool consistency (Kanakupt), and beneficially shift fecal microbiota and metabolite profiles (Propst). A few have reported the benefits that prebiotics may have on metabolic health, demonstrating improved glucose metabolism and insulin sensitivity in pets consuming prebiotics (Respondek; Verbrugghe). Since we’re looking at foods rather than at medicines that address disease, the majority of research has been conducted in healthy animals so evidence of health improvements in diseased pets is sparse.

Types of pet-friendly prebiotics

Although a few studies have tested galactooligosaccharides (GOS), mannanoligosaccharides, and other potential prebiotics, by far the most common prebiotics studied and present in pet foods are the non-digestible fructans. Natural sources, such as chicory, or isolates and extracts that have a high purity, including short-chain fructooligosaccharides (FOS), oligofructose, and inulin, are all present in pet foods.

Which pets benefit most?

Similar to dietary fiber, the need for prebiotic inclusion is dependent upon diet type and formulation. Animals consuming plant-based diets that are rich in natural fibers and non-digestible oligosaccharides likely do not require additional fermentable substrate in the formula. Dogs and cats fed high-protein, meat-based diets, however, typically have greater fecal odor, a higher colonic pH, and higher density of potential pathogens due to a high rate of protein fermentation. In those diets, prebiotic inclusion may help animals normalize their gut microbiota abundance and metabolism.

Prebiotics may be fed to all pets, but will likely provide the greatest benefits to geriatrics, animals who are or have received antibiotics, those under high stress conditions, or those with certain gastrointestinal disorders. The low caloric density of prebiotics and the metabolic benefits that come from their fermentation will be most beneficial to pets with obesity and diabetes. As for all functional ingredients, dosage is important. When comparing dogs and cats, dogs usually can tolerate a higher dosage than cats. In regard to dog size, small dogs can typically tolerate a higher dosage (per unit body weight) than large dogs, which are more susceptible to loose stools. In most commercial pet foods, prebiotic inclusion levels are <0.5% of the formula to limit side effects.

Further research on prebiotic substances

Using the powerful tools that are now available to study gut microbiota and host physiology, future research can hopefully determine what microbes are most important to the health of dogs and cats and identify mechanisms by which prebiotics provide health benefits to pets. Further testing, which may include plant-based ingredients, yeast-based products, and milk oligosaccharide mimics, will hopefully identify other prebiotic substances and continue to expand our knowledge in the field.

 

Kelly Swanson joined the ISAPP board of directors in June, 2020, providing valuable expertise in animal gut health and overall health. Swanson also chaired the 2019 ISAPP-led international consensus panel on the definition of synbiotics.

 

 

 

Do you know the difference between fiber and prebiotics? A new ISAPP infographic explains

Many people think prebiotics and fiber are the same thing. But according to leading scientists, they’re not. Fiber and prebiotics are both dietary tools to promote health, but you need to know some key differences between these two types of nutrients in order to make the best decisions for your health.

This new infographic summarizes what fiber and prebiotics have in common, and how they are different (including their distinct effects on the gut microbiome). And most importantly of all: you’ll learn how to get them in your daily diet so you can take advantage of their proven health benefits.

The infographic was written by ISAPP board of directors with input from several outside experts and coordinated by the ISAPP science translation committee.

2018_Singpaore

ISAPP’s First Meeting in Asia is a Huge Success

June 5-7th 2018 ISAPP held it’s first Asian meeting in Singapore. This open registration meeting was a huge success with over 240 attendees from 34 countries.

Two days of plenary talks focused on the latest science featuring prebiotic and probiotic use in: pediatrics, oral health, allergy immunotherapy, the gut microbiome throughout life, synbiotics, liver disease, honey bee health, chronic gut disorders, and more. The meeting also featured an interesting talk about the changes coming in the nomenclature of the genus Lactobaccilus.

The plenary, open sessions were followed by a Discussion Forum on June 7th for invited experts and Industry Members. The discussion groups focused on:

  • Harmonizing Global Probiotic and Prebiotic Food/Supplement Regulation
  • Fermented Foods for Health: East Meets West
  • Potential Value of Probiotics and Prebiotics to Treat or Prevent Serious Medical Issues in Developing Countries
  • Prebiotics as Ingredients: How Foods, Fibres and Delivery Methods Influence Functionality

Finally, there were over 70 posters presented at the meeting featuring the latest prebiotic and probiotic research from around the world.

Next year, ISAPP will be hosting an invite-only meeting in Antwerp, Belgium – May 14-16, 2019. To attend this meeting, join ISAPP as an Industry Member.