Posts

Episode 38: Microbes that break down mucus and milk to benefit the host, with Dr. Clara Belzer PhD

We discuss microbes, mucus, and milk with Dr. Clara Belzer PhD from Wageningen University in the Netherlands in this episode. Dr. Belzer, a molecular geneticist, specializes in studying the microorganisms that are equipped to break down the glycans in mucus and human milk within the host environment.

Key topics from this episode:

  • Dr. Belzer’s research focuses on the microbes living in the host that survive on glycans (chains of sugars) produced by the host: milk oligosaccharides and mucus. The host is not good at digesting these sugars, but can use them when they’re separated into smaller components. These long chains of sugars end up in the large intestine, where certain microbes begin to digest them.
  • There seems to be an evolutionary adaptation that sustains the symbiotic relationship between human milk and bacteria in the infant gut; many immune molecules in the human milk suppress pathogens, so the human milk oligosaccharides (HMOs) are available to the bacteria in the infant gut that can break them down. The bacteria are not suppressed by the acidic environment in the infant gut.
  • Human milk is the best food for infants, but innovations in infant formula may make it more similar to human milk.
  • Akkermansia is a genus of bacteria mostly found in adults, but also sometimes in infants, which grows in the mucosal layer of the intestines. (It doesn’t survive on dietary glycans.) Dr. Belzer’s hypothesis is that the environment created by human milk in the infant gut also fosters bacteria that can grow on mucus, creating a succession of host-benefitting bacteria. They found that HMOs, in addition to mucus, can support the growth and survival of Akkermansia, potentially helping it build a microbial network.
  • There’s a genetic component to the HMOs contained in human milk; similarly, the sugar content in the mucosal glycans is related to host genetics.
  • Lean individuals have a higher abundance of Akkermansia; these bacteria improve metabolism (for example, increasing insulin sensitivity) and have effects on the immune system, which both contribute to a lean phenotype. The root of these effects may be the strengthening of the gut barrier, which dampens signals from the lumen.
  • Dr. Belzer has used both omics and culture-based approaches in her research. As part of her research she tries to make microbial synthetic communities, growing them in the lab and stimulating them with different glycans. This technique yields insights about the functions and microbial ecology in the gut.
  • Killed Akkermansia are still able to bring health benefits to the host. Dr. Belzer had the idea that the pili structures on the bacteria were what communicated with the host, and sure enough, this was borne out in a study that showed the proteins in the pili (Amuc_1100) remained intact in the pasteurized bacteria and could stimulate the host immune system. This is a valuable finding because Akkermansia are difficult to culture.
  • When Akkermansia fails to occupy the niche in the mucus layer, Bacteroides species may occupy the niche instead, forming a different microbial community in the mucus. Research is ongoing about the effects of different microbes carrying out similar functions for the host. Furthermore, scientists have many more microbial functions to discover.

Episode abbreviations and links:

About Dr. Clara Belzer PhD:

Dr. Clara Belzer is Associate Professor Microbiology at the Laboratory of Microbiology of Wageningen University. The Belzer group is called ‘Microbes Mucus and Milk’ and the research is focused on the interaction of the gut microbiome with host mucus and milk. After obtaining her PhD at the Erasmus Medical Center Dr. Belzer did a postdoc at Harvard medical school. By now Dr. Belzer has years of experience on gut microbiome studies on anaerobes, including synthetic communities and different biotic concepts, with a special interest for the Akkermansia muciniphila. The group of Dr. Belzer works on several microbiome HMO and mucus related topics funded by national and international grants, some also in collaboration with medical centers and industry.

Episode 32: How microbes and mucus interact in the gut

How microbes and mucus interact in the gut, With Dr. Mindy Engevik PhD

How microbes and mucus interact in the gut, With Dr. Mindy Engevik PhD

Episode summary:

In this episode, the ISAPP hosts discuss mucus-microbe interactions in the digestive tract with Dr. Mindy Engevik PhD from the Medical University of South Carolina, USA. They discuss how mucus in the gut is produced and degraded, and different ways that pathogens and commensal microbes interact with the mucus layer. Dr. Engevik describes some different ways that commensal bacteria make use of mucus, as well as dietary influences on gut mucus production.

Key topics from this episode:

  • The gut epithelium has special cells called goblet cells that actively secrete mucus. In the small intestine, mucus forms a light barrier but in the colon, it forms a thicker barrier with two layers: an inner layer free of microbes, and an outer layer where mucus and microbes coexist.
  • Bacteria in the gut make use of mucus in different ways. Many microbes have the capacity to degrade mucus, and it can provide a carbon source for bacteria to survive. Even bacterial quorum sensing can be influenced by mucus.
  • Bifidobacteria increase mucus production. Akkermansia are good at degrading mucus and also increasing mucus production. Pathogens, however, degrade the mucus and cause inflammation so mucus production is suppressed.
  • Several human diseases involve a dysfunctional gut mucus layer – for example, inflammatory bowel disease.
  • Various models are used for studying mucus – for example, traditional cell lines and human intestinal organoids.
  • Dr. Engevik’s work has found interactions between Clostridioides difficile and Fusobacterium nucleatum in the gut: these bacteria can interact to form biofilms that are more antibiotic-resistant than normal.
  • Individual differences exist in gut microbes as well as glycan structure in the gut, so the best insights will likely come from understanding the entire network of microorganisms, metabolites, and mucus. 
  • Dietary components influence the gut microbiota, which influences mucus production in the gut. High dietary fiber increases the amount of mucus produced by the goblet cells. Some bacteria degrade dietary substrates, then switch over to mucus when they don’t get what they need from the diet.
  • Dr. Engvik is an avid science communicator and advocates for scientists being present on social media. She has found science communication a great way to engage with the public as well as fostering scientific collaborations. The Instagram account showing microscopy images from her lab is @the_engevik_labs

Episode links:

About Dr. Mindy Engevik PhD:

Mindy Engevik is an Assistant Professor at the Medical University of South Carolina. She has Ph.D. in Systems Biology & Physiology and an interest in microbe-epithelial interactions in the gastrointestinal tract. Her lab focuses on how commensal friendly bacteria in the human gut interact with intestinal mucus and she tries to leverage this information to treat intestinal disorders. You can follow her on Twitter at @micromindy.