Posts

Archive Highlight: Biotics in animal and human nutrition, with Prof. Kelly Swanson PhD

 

Completing our series on the role of biotics in animal health, we are highlighting Episode 22 from our archives. In this episode, Prof. Kelly Swanson PhD from University of Illinois at Urbana-Champaign discusses the role of biotics in animal and human nutrition. He reviews the criteria for prebiotics and synbiotics, then discusses how we gain knowledge about nutrition and the role of biotics in animals compared to humans.

Key topics from this episode:

  • A good argument can be made that biotics are essential for our diet; they are beneficial even if efficacy is sometimes difficult to prove.
  • Nutrients have an impact on the host’s health and simultaneously on the host-associated microbes.
  • Health benefits are essential to the FDA definition of fiber.
  • Antibiotics’ effect on the microbiota: short-term effects may be minor, but we still don’t know the long-term effects.
  • The synbiotics definition, criteria for products to meet this definition, and the health outcomes from using these biotic substances.
  • The difference between complementary and synergistic synbiotics.
  • When studying biotics in companion animals (cats and dogs), can results from one host be extrapolated to another host? Final studies should be in the target host.
  • Biotics are important in veterinary medicine and a popular topic of study.
  • Predictions about the future of nutrition science as informed by the microbiome.

Episode links:

Additional resources:

About Prof. Kelly Swanson:

Kelly Swanson is the Kraft Heinz Company Endowed Professor in Human Nutrition at the University of Illinois at Urbana-Champaign. His laboratory studies the effects of nutritional interventions, identifying how diet impacts host physiology and gut microbiota. His lab’s primary emphasis is on gastrointestinal health and obesity in dogs, cats, and humans. Much of his work has focused on dietary fibers and ‘biotics’. Kelly has trained over 40 graduate students and postdocs, published over 235 peer-reviewed manuscripts, and given over 150 invited lectures at scientific conferences. He is an active instructor, teaching 3-4 nutrition courses annually, and has been named to the university’s ‘List of Teachers Ranked as Excellent by Their Students’ 30 times. He serves on advisory boards for many companies in the human and pet food industries and non-profit organizations, including the Institute for the Advancement of Food and Nutrition Sciences and International Scientific Association for Probiotics and Prebiotics.

Targeting the rumen microbiota for reduced methane production, with Prof. Alex Hristov PhD

This episode features Prof. Alex Hristov PhD from Penn State University (USA) talking about the microbiota of ruminants and how it can be targeted for reduced methane production. The rumen (pre-stomach area) of cows and other animals contains microorganisms that digest the feed before it enters the rest of the gastrointestinal tract. Hydrogen is produced to inhibit further fermentation of the feed, and this hydrogen is rapidly converted to enteric methane, which is emitted by the animal – accounting for a large proportion of methane emissions that contribute to global warming. Several approaches exist for targeting the rumen microbiota with the aim of reducing methane emissions. Some feed additives, including one recently approved by regulators in the US, can reduce enteric methane by around 30% and appear safe for the animal. Vaccines against the methane-producing archaea in the rumen are another potential approach suitable for grazing livestock. Direct microbials have also been advanced. Many other sources of methane emissions exist besides livestock, but significantly reducing the methane production in the livestock industry could have a major positive impact on global warming. Feed additives for now are the leading strategy, and adoption of existing solutions in multiple places is critical. This episode is part of a series on the role of biotics in animal health.

Episode abbreviations and links:

Additional resources:

ISAPP blog post: Microbiota from a surprising source—baby kangaroos—might decrease cattle methane production

About Prof. Alex Hristov PhD:

Dr. Alexander N. Hristov is a Distinguished Professor of Dairy Nutrition in the Department of Animal Science at The Pennsylvania State University. He has a Ph.D. in Animal Nutrition from his native Bulgaria. Hristov has worked at the USDA-ARS Dairy Forage Research Center in Madison, WI, the Ag Canada Research Center in Lethbridge, AB, was on the faculty at the Department of Animal and Veterinary Science, University of Idaho from 1999 to 2008 and is at Penn State since 2008. Hristov’s main research interests are in the areas of mitigation of nutrient losses and gaseous emissions from dairy operations and protein and amino acid nutrition of dairy cattle. He has published over 220 peer-reviewed journal papers, books, and book chapters.

Microbiota from a surprising source—baby kangaroos—might decrease cattle methane production

By Prof. Seppo Salminen, University of Turku, Finland

One of the major contributors to greenhouse gas production is the final stage of anaerobic fermentation in the rumen (pre-stomach compartment) of cattle, which produces methane. The process is the top agricultural source of greenhouse gases worldwide. In addition, the formation of methane is associated with approximately 10% energy loss in animals.

To ameliorate the drawbacks of methanogenesis, scientists at Washington State University explored the potential of homoacetogenic microbes (i.e. those that promote the production of acetate),  and especially Acetobacterium woodii, to outcompete methanogens and thereby reduce methane production in the rumen of production animals.

For this purpose, original inoculum of rumen samples were obtained from freshly slaughtered cows and developed into stable consortia of methanogens. Meanwhile, homoacetogenic cultures were developed from baby kangaroo droppings obtained from a wallaby ranch in Washington State. The original baby kangaroo sample had no methanogens present. Rumen bioreactors were inoculated with the bovine study samples and kangaroo gut microbes, and monitored for methane production and kinetics.

The investigators reported that acetogens are dominant in kangaroos, and in their presence methanogens are generally inhibited. The researchers suggested that kangaroos have interesting novel acetogens that utilize hydrogen, which rumen fermentation produces. These acetogens are potential probiotics, once they are well characterized and the benefits to rumen fermentation are documented.

This study also suggests that a variety of kangaroo acetogens should be further explored for their potential use in controlling rumen fermentation and reduction of greenhouse gas production. At the same time, additional benefits of acetogens from other marsupials could be explored and new findings are possible for potential biotic (pro-, pre-, syn- and postbiotic) development.

 

 

 

 

 

Biotics in animal and human nutrition

Episode 22: Biotics in animal and human nutrition

Biotics in animal and human nutrition

 

The Science, Microbes & Health Podcast 

This podcast covers emerging topics and challenges in the science of probiotics, prebiotics, synbiotics, postbiotics and fermented foods. This is the podcast of The International Scientific Association for Probiotics and Prebiotics (ISAPP), a nonprofit scientific organization dedicated to advancing the science of these fields.

Biotics in animal and human nutrition, with Prof. Kelly Swanson

Episode summary:

In this episode, the ISAPP podcast hosts join guest Prof. Kelly Swanson PhD from University of Illinois at Urbana-Champaign, to discuss the role of biotics in animal and human nutrition. They review the criteria for prebiotics and synbiotics, then discuss how we gain knowledge about nutrition and the role of biotics in animals compared to humans.

Key topics from this episode:

  • A good argument can be made that biotics are essential for our diet; they are beneficial even if efficacy is sometimes difficult to prove.
  • Nutrients have an impact on the host’s health and simultaneously on the host-associated microbes.
  • Health benefits are essential to the FDA definition of fiber.
  • Antibiotics’ effect on the microbiota: short-term effects may be minor, but we still don’t know the long-term effects.
  • The synbiotics definition, criteria for products to meet this definition, and the health outcomes from using these biotic substances.
  • The difference between complementary and synergistic synbiotics.
  • When studying biotics in companion animals (cats and dogs), can results from one host be extrapolated to another host? Final studies should be in the target host.
  • Biotics are important in veterinary medicine and a popular topic of study.
  • Predictions about the future of nutrition science as informed by the microbiome.

Episode links:

Additional resources:

About Prof. Kelly Swanson:

Kelly Swanson is the Kraft Heinz Company Endowed Professor in Human Nutrition at the University of Illinois at Urbana-Champaign. His laboratory studies the effects of nutritional interventions, identifying how diet impacts host physiology and gut microbiota. His lab’s primary emphasis is on gastrointestinal health and obesity in dogs, cats, and humans. Much of his work has focused on dietary fibers and ‘biotics’. Kelly has trained over 40 graduate students and postdocs, published over 235 peer-reviewed manuscripts, and given over 150 invited lectures at scientific conferences. He is an active instructor, teaching 3-4 nutrition courses annually, and has been named to the university’s ‘List of Teachers Ranked as Excellent by Their Students’ 30 times. He serves on advisory boards for many companies in the human and pet food industries and non-profit organizations, including the Institute for the Advancement of Food and Nutrition Sciences and International Scientific Association for Probiotics and Prebiotics.

Domestic horses from different geographical locations harbor antibiotic resistant gut bacteria, unlike their wild counterparts

By Dr. Gabriel Vinderola, PhD,  Associate Professor of Microbiology at the Faculty of Chemical Engineering from the National University of Litoral and Principal Researcher from CONICET at Dairy Products Institute (CONICET-UNL), Santa Fe, Argentina

It all started on the 12-hour ferry trip that links Turku with Stockholm during one of the last still warm- summer days of September 2016, when a group of scientists met: Seppo Salminen, Miguel Gueimonde, Carlos Gómez- Galllego and Akihito Endo (joining us virtually from Japan well before the pandemic made these virtual meetings so popular). One of the topics was the possibility of conducting a study comparing the gut microbiome of feral and domestic horses. We had no specific funding for the project but we agreed it would be worthwhile and all agreed to participate.

Misaki wild horses from Cape Toi’s Reserve, Japan. Photo courtesy of Seppo Salminen.

Domesticated horses live under different conditions compared with their wild ancestors. We hypothesized that the animals’ housing, regular veterinary care and feeds would lead to an altered microbiota compared to wild horses. The project was ambitious and challenging in several ways: we aimed at sequencing all microbes, not just bacteria, by using whole genome sequencing; sampling droppings from feral horses needed special permission from the parks or reserves where these horses were held; the project required shipping samples from different parts of the world to the same place where they would be processed; and this all had to be managed without specific financial support to cover the expenses. Curiosity, personal dedication and funding from each end fueled this project.

Little by little, samples of feces of feral and domestic horses were collected in Argentina, Finland, Spain, Russia and Japan. Fecal DNA was extracted in every sampling location and sent to Prof. Li Ang in China for whole genome sequencing and data analysis.  A remarkable contribution was made by Prof. Ang and his team from the Zhengzhou University in China. In his words:

The biggest challenge was that very few sequences (less than 5%) were from known species hosted in the gut of horses. This number is usually 50-60% or 80-90% in human adults or infants gut microbiota, respectively. Thus we had to use ‘old school methods’ to get microbiota profiles, by constructing a custom reference database with whole genomes and then choosing specific alignments, a process that required thousands of computing hours. Interestingly, we found some specific species in horses from different locations. For example, we found shiitake mushroom in Japanese horses, a common food in East Asia families, but not in horses from other locations.

Cimarron wild horses from the State Park Ernesto Tornquist, Argentina. Photo courtesy of Seppo Salminen.

The fecal microbiome of 57 domestic and feral horses from five different locations on three continents were analyzed, observing geographical differences. A higher abundance of eukaryota (p < 0.05) and viruses (p < 0.05) and lower abundance of archaea (p < 0.05) were found in feral animals when compared with domestic ones. The abundance of genes coding for microbe-produced enzymes involved in the metabolism of carbohydrates was significantly higher (p < 0.05) in feral animals regardless of the geographic origin, which may reflect the fact that feral horses are exposed to a much more diverse natural vegetal diet than their domesticated counterparts. Differences in the fecal resistomes between both groups of animals were also observed. The domestic/captive horse microbiomes were enriched in genes conferring resistance to tetracycline, likely reflecting the use of this antibiotic in the management of these animals. Our data also showed an impoverishment of the fecal microbiome in domestic horses with diet, antibiotic exposure and hygiene being likely drivers, a fact that has been also reported for us, humans.

Almost 6 years passed since the results of those ideas discussed on board a ferry slowly galloped into the cover of the February edition of Nature Communications Biology. We hope this will be a starting point for more work that can help uncover the best ways to support equine health.