The Role for Pre & Probiotics in Chronic Gut Disorders (in the Asia-Pacific Region)

Reuben KM Wong

MBBS AGAF FRCP FAMS Associate Professor Gastroenterologist

Scope

- **1.** Microbial Influence in GI disease
- 2. Changing the "bug-scape"
 - 1. Probiotics & Prebiotics
 - 2. Antibiotics
 - 3. Fecal Microbial Transplantation

3. The evidence for microbial manipulation

- 1. Diar
- 2. IBS
- 3. IBD
- 4. Liver Disease

The Microbial Balance

Stomach and duodenum

- Harbor very low numbers of microorganisms: <10³ bacterial cells/g of contents
- Mainly lactobacilli and streptococci
- Acid, bile, and pancreatic secretions suppress most ingested microbes
- Phasic propulsive motor activity impedes stable colonization of the lumen
- No. bacteria progressively increase from approximately 10⁴ cells in the jejunum to 10⁷ cells/g of contents in the distal ileum
- Heavily populated by anaerobes: 10¹² cells/g of luminal contents

WGO Probiotic & Prebiotic Guidelines 2011. J Clin Gastroenterol 2012

Jejunum and ileum

Large intestine

Faecal Microbiota Transplantation (FMT) **The new kid on the block?**

Animals

- Ancient Medicine
- 1. "Yellow-Dragon Soup" CHINA
 - Tong-Jin Dynasty
 4th Century
 - Ming Dynasty
 16th Century
- 2. Modern Medicine

EISEMAN B, SILEN W, BASCOM GS, KAUVAR AJ.

Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958 Nov;44(5):854-9. PubMed PMID: 13592638.

REANIMATE Don't pooh-pooh faeces transplant treatment

Method can potentially be used to treat common ailments but has yet to catch on

By LINETTE LAI

A FAECES transplant may smell - and sound like an odd cure, but it can potentially be used to treat common ailments such as irritable bowel syndrome if it catches on.

Two patients at the National University Hospital (NUH) have already found welcome relief: Healthy bacteria from a domante faccal matter more

06 ● 新加坡

used to help restore their digestive systems to full health earlier this year.

Patients who typically require this treatment are those who have been put on strong antibiotics, which kill all but the most resistant bacteria. But the surviving bacteria can cause problems, from frequent diarrhoea to ruptured intestines, and even death.

NUH sees 20 to 30 cases of such out infactions anoth Only 2014年6月8日 运输用 数余单基

about two-thirds of patients respond an to conventional treatment methods, int and even then, the problem may recur.

While the faecal procedure is common overseas, NUH doctors say it has not caught on here due to the "yuck factor". For, of course, the first step is to collect stool from donors - which is more complex than it sounds.

Donors must pass a health screening and this is "as strict as that for the usual organ transplants", said Dr Calvin Koh, a registrar at NUH's gastroenterology and hepatology division. Then, the collected matter is proanned to intreat the fireed backard ?

First local 'poop transplants'

NUH treats chronic gut infections with stool transplants

SINSAPORE - Faceal mutter and cures are not words usually associated with each other. But doctors here have found a marky way to treat those with elironic gut infections by pumping microorganisms found in facces from a healthy donor into a patient. Earlier this year, doctors per-

ica

mε

mε

pa

do

act

formed Singapore's first faecal microbiota transplant (FMT) under the REANIMATE programme and successfully treated two elderly female patients who were chronic sufferors of Clostridium difficile (C.diff) infection.

There has been a significant increase in antihiotic-associated C.diff that r infection, which was the result of wide-Ci spread and sometimes indiscriminate use of antibiotics, said doctors from not h National University Hospital (NUH) told (at a press conference yesterday. About 20 to 30 per cent of patients

refuse who suffer from C.diff infection nolonger respond to conventional antibi-Ine otic treatments and recurrence rates.

are as high as 15 to 25 per cent. Stool donars Antibiotics can kill off the majority are stringently of bacteria in the gut, leaving resistant screened and tests are conducted ones behind to multiply. One of which to evaluate is C.diff, a bacterium that releases suitability. NUH is toxins that damage the intestinal linnot looking to ing. It can cause increased fluid proexception and the anisting duction, inflamed gat lining and even pool of donors at tears in the intestine, which can lead the moment but. to severe diarrhoen, abdominal pain patients who wish to or even death in severe cases. uve their friends or

"We started looking at other treatfamily members. ments, like possible new drugs. But in become donors can vait the hospital terms of antibiotic development, we and be screened. are not discovering new antibiotics. at the rate that we are requiring it. Thus, the other method of treatment would be stool transplant." said Dr Nicholas Chew, consultant and clinical director at NUH's Division of Infectious Disenses.

Under the FMT treatment, good microorganisms extracted from a healthy donor's stool sample are transplanted into a patient's gut with

an endoscope through gastroscopy or colonoscopy. These microorganisms multiply in the recipient's colon and help to restore the gut's ecosystem,

Dr Chew also quoted "a steady increase in C.diff cases in hospitals over the recent two or three years", with about 20 to 30 patients treated for Califf monthly. While C.diff infection can affeet patients of any age group, it tends to be more severe in the elderly and the very ill as they frequently consume antiliioties to combat various illnesses. Contrary to what one might as-

sume, FMT is not a new-found medical procedure. For many years, it was a popular treatment method in the United States, Europe and Australia, and can even be traced back to ancient Chinese history. In the New England Journal of Medicine last year, an ovidence-based study showed patients who had undergone FMT for C.diff infections had a success rate of 80 to 122 per cent. TAN SHI WE

黄便内健康的就生粘焊,然后里到带下80级压度的水柜冷冻,待需要接接到 16.8 16.0 家族的国际委员与作者和选择后的国 不许或铜铁品、其作一出褐适节表击 ALLERACTENTS IN THE REAL PROPERTY AND INCOMES. 8、从原告与关键的注意成少当年天网

121、放着原系注意或成金 掌握拳型科研技术 貸款條 就送来历中的利益保生物。 诸位内道诸侯大道人所承任 BR. BRATHONRY MIGHT 21448. (8446)

水场因于最大学研究理解的现 6. 为发车来去省的标准束这一个能来 地名马,齐曾拉亚布东北宋公治法 KREMEN, WARRANGE ST 100.000次和412年後前編, 初始进行 金川市并有利利用/0届点形心和空心: 风光的现在分词进行了非能行的用 常的人名英斯特尔维尔内里尔 用标准系,作业计和分用系分的压挤系 要求自己保健公、自己定法法律任何 H. MERRORSWORKSREE 液, 只是因为积谷健康的贫生物理, 何 当来到下户间就已成出达和市场, 四边 家主张被击退将关注记者自上的话, 谢 10004041-0-0002 **市田市松田川市は日田市田市人の** #世代成果的消耗大量分析发展消息 MONIBELE AND AND A 199 家居南东的东部市镇,省村市美达市 THE REPORTER NAME 2.一個私行行為自然強烈行動會會員 should all b. I diaman Harry Conservation and

我们将个人的专家办公式协会工作地。

Faecal Microbiota Transplantation in a Nutshell

Donor Screening

The donor undergoes a stringent screening process to ensure the donor is free from infections and safe for transplant.

Sample Processing

The sample is then processed in the lab where the team will remove some solid matters and mix the stool with sterile saline solution to make it liquid.

Sample Collection

The donor provides samples of his/her faeces and sends it to the hospital.

Transplant into the Recipient-Patient

The liquefied stool is transplanted into the gastrointestinal tract of the recipient-patient with an endoscope, by means of a gastroscopy or colonoscopy. Patient remains sedated throughout the procedure.

Determinal Utility of FMT

Smits LP. Therapeutic potential of FMT. Gastro 2013

Blue: beneficial effect FMT in case series Black: association between gut microbiota and disease from experimental/observational studies

Regime Change...

Chronic Gut conditions amenable to microbiota manipulation

Clostridia Difficile Colitis

Probiotics to prevent C Difficle

Study, Year (Reference) Experimental Group, n Control Group, # Weight, % Rolativo Risk (95% CI) Events Total Events Total M-H Random Arvola et al. 1999 (32) 61 ٠ 1.7 0.95 (0.06-14.85) 1 58 Beausolell et al. 2007 (33) 1 44 7 45 3.0 0.15 (0.02-1.14) Bravo et al. 2008 (34) 0 41 G 45 Not estimable -Can et al. 2006 (35) 0 73 2 78 1.4 0.21 (0.01-4.37) 196 Duman et al. 2005 (36) Ð 1 180 12 0.31 (0.01-7.47) Gao et al. 2010 (37) 9 171 20 84 23.0 0.22 (0.11-0.46) Hickson et al. 2007 (38) Ð 56 9 53 1.6 0.05 (0.00-0.84) 0.32 (0.09-1.14) Kotowska et al. 2005 (39) з 119 10 127 7.9 1 13 3.11 (0.13-75.26) Lönnermark et al. 2010 (40) 80 0 83 McFarland et al. 1995 (41) з 97 4 96 5.9 0.74 (0.17-3.23) 95 94 8.9 4 7 0.57 (0.17-1.87) Miller at al, 2008 (47) Miller et al. 2008 (47)* 2 157 0 159 1.4 5.06 (0.25-104.63) Plummer et al. 2004 (42) 2 69 5 69 49 0.40 (0.08-1.99) 'n, 221 Psaradellis et al, 2010 (48) 216 4 27 0.26 (0.03-2.27) 5 16.1 Ratig et al. 2007 (49) 45 22 55 0.28 (0.11-0.67) з 7 Ruszczyński et al. 2008 (43) 120 120 72 0.43 (0.11-1.62) Ð 17 Satdar et al, 2008 (44) 73 1 13 0.25 (0.01-5.79) 0 62 Solinger et al. 2011 (50) G 62 Not estimable Surawicz at al. 1989 (45) B 116 5 64 6.5 0.33 (0.08-1.34) 2 3 0.67 (0.11-3.96) Thomas et al. 2001 (46) 133 134 4.0 0.34 (0.24-0.49) Total (95% CI) 1974 1844 100.0 Total ovents, n 108 Hotorogeneity: x² = 0.00; chi-square = 12.09; P = 0.79; I² = 0% 0.1 0.01 10 100 Test for overall effect: Z = 5.87: P < 0.001 **Favors Experimental Favors Control** Group Group Relative Risk (95% CI)

Probiotics for the prevention of CD Diarrhea – Meta-anlysis & Sys Review: Annals IntMed 2012

Are there factors that affect outcome?

Probiotics for the prevention of CD Diarrhea - Meta-anlysis & Sys Review: Annals IntMed 2012

Study	Indication	Patients (n)	Mode of administration	Outcome
Eiseman et al.1º (1958)	Severe PMC	4	Fecal enema	Dramatic resolution of PMC in all patients (100%)
Cutolo et al. ⁶² (1959)	PMC	1	Cantor tube, then fecal enema	Resolution
Fenton et al. ⁶³ (1974)	PMC	1	Fecal enema	Symptom resolution within 24 h; sigmoidoscopy at 4 days revealed normal mucosa
Bowden <i>et al.</i> ⁶⁴ (1981)	PMC	16	Fecal enema (n=15); enteric tube (n=1)	Rapid and dramatic response in 13 of 20 (65%) patients, 3 of 20 (15%) patients died; no evidence of PMC on autopsy in 2 of those patients, the third patien was found to have small-bowel PMC
Schwan et al. ^{co} (1984)	Recurrent CDI	1	Fecal enema	Prompt and complete normalization of bowel function
Tvede & Rask-Madsen ¹⁰	Recurrent CDI	6	Fecal enema	Prompt C. difficile eradication and symptom resolution,

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JANUARY 31, 2013

VOL. 368 NO. 5

Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile

Els van Nood, M.D., Anne Vrieze, M.D., Max Nieuwdorp, M.D., Ph.D., Susana Fuentes, Ph.D., Erwin G. Zoetendal, Ph.D., Willem M. de Vos, Ph.D., Caroline E. Visser, M.D., Ph.D., Ed J. Kuijper, M.D., Ph.D., Joep F.W.M. Bartelsman, M.D., Jan G.P. Tijssen, Ph.D., Peter Speelman, M.D., Ph.D., Marcel G.W. Dijkgraaf, Ph.D., and Josbert J. Keller, M.D., Ph.D.

		027 strain)		
Khoruts et al. ³³ (2010)	Recurrent CDAD	1	Colonoscope	C. difficile eradication, confirmed via negative culture; remained negative at 6-month follow-up
Yoon & Brandt ⁷⁶ (2010)	Recurrent CDAD PMC	12 (2 with classic PMC on colonoscopy)	Colonoscope	All patients (100%) exhibited durable clinical response
Rohlke et al. ²⁸ (2010)	Recurrent CDI	19	Colonoscope	18 of 19 (94.7%) patients clinically asymptomatic between 6 months and 5 years post-FMT
Silverman et al. ^{rr} (2010)	Chronic recurrent CDI	7	Low-volume fecal enema	All (100%) patients clinically asymptomatic
Garborg et al. ⁷⁸ (2010)	Recurrent CDAD	40	Colonoscope (n=2); duodenal instillation (n=38)	Eradication of C. difficile in 33 of 40 (82.5%) patients
Russell et al. ^{rs} (2010)	Recurrent CDI	1	Nasogastric tube	Resolution of diarrhea within 36h; repeat C. difficile toxin assay negative
Kelly et al.#0 (2010)	Chronic, recurrent CDI	12	Colonoscope	All (100%) patients exhibited clinical response
Mellow et al. ⁸¹ (2010)	Recurrent and refractory CDI	13	Colonoscope	12 of 13 (92.3%) patients were C. difficile toxin negative, coinciding with rapid resolution of diarrhea

Brody TJ, Khoruts A. FMT and emerging applications. Nat Rev Gastroenterol 2012.

Why is FMT so successful in C. Difficile

Youngster I et al. FMT for replapsing C Diff Infection. Clin Infec Dis 2014

"Top-down or Bottom-up?" The Best Route for Stool Delivery

Whose Poop to use?

Related Donor

- Less "icky" factor
- "I'm getting my wife's stool... part of her now lives in me!"
- Dysbiosis runs in families and a shared envioronment

- Unrelated Donor
 - 90-92% vs 70%
 success rate in CDI
 eradication
 (Hamilton et al)
- Fresh is Better?
 - 92% Fresh vs. 90%Frozen success rate
 - Ready-to-go poop

Helicobacter Pylori

Helicobacter Pylori

Eradication

- Rates vary widely but going down
- Anything to boost eradication
- Potential move back to single antibiotic regimen with PCABS

- Side-Effects
 - Maastricht VI
 - Triple Rx
 - Sequential Rx
 - Quadruple Rx

Eradication of H Pylori

	Experim	ental	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed. 95% Cl	M-H. Fixed. 95% Cl
Ahmad K 2013	30	33	23	33	2.8%	1.30 [1.02, 1.67]	
Ahmad S 2013	69	90	73	90	8.8%	0.95 [0.81, 1.10]	
Deguchi R 2012	95	115	79	114	9.6%	1.19 [1.03, 1.38]	
Francavilla R 2014	33	44	29	44	3.5%	1.14 [0.87, 1.49]	
Hauser G 2015	291	333	230	317	28.6%	1.20 [1.11, 1.30]	
Ling Y 2014	58	66	42	66	5.1%	1.38 [1.13, 1.69]	
Lionetti E 2006	17	20	16	20	1.9%	1.06 [0.80, 1.41]	
Manfredi M 2012	65	73	67	76	8.0%	1.01 [0.90, 1.13]	
Navarro-Rodriguez 2013	49	55	44	52	5.5%	1.05 [0.91, 1.22]	-
Ojetti V 2012	36	45	28	45	3.4%	1.29 [0.98, 1.69]	+
Sheu BS 2006	59	69	49	69	5.9%	1.20 [1.01, 1.44]	
Wang YH 2014	36	49	29	51	3.4%	1.29 [0.96, 1.73]	
Ycon H 2011	104	151	124	186	13.5%	1.03 [0.89, 1.20]	
Total (95% Cl)		1143		1163	100.0%	1.15 [1.10, 1.20]	•
Total events	942		833				N. 17 17 18 1 19
Heterogeneity: Chi ² = 21.9	5, df = 12 (i	P = 0.04); l ² = 45%	6			
Test for overall effect: Z =	5.94 (P < 0	.00001)					U.5 U.7 1 1.5 2 Favours [control] Favours [experimental]

H Pylori Eradication

Reduction of Side Effects

Is there a role for probiotics in H Pylori

- Works best in combination with antibiotic eradication regimens
- Meta-analysis of 14 RCTs
- OR 1.84 (95% CI 1.34-2.54) in favour of probiotics in HP eradication
- Reduced AAD, OR 0.44 (95% CI 0.30-0.66)

Inflammatory Bowel Disease

Crohn's Disease

- 💶 Colon
 - Illeum & small bowel
- Granulomatous Disease
 - Extra-intestinal Involvement
 - Treatment:
 - Biologics
 - Immunosupressants

Ulcerative Colitis

- Colon
- Backwash ileitis
- Ulceration with crypt abcesses
- Treatment:
 - Aminosalicylates
 - Immunosuppressants
 - Microflora manipulation

Can probiotics <u>induce remission</u> of IBD?

	Probio	tics	Place	bo		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
1.4.1 UC								
Kato 2004	4	10	3	10	5.6%	1.33 (0.40-4.49)	2004	
Furrie 2005	5	9	3	9	6.4%	1.67 (0.56-4.97)	2005	
Miele 2009	13	14	4	15	8.4%	3.48 (1.49-8.16)	2009	
Sood 2009	33	77	11	70	11.3%	2.73 (1.50-4.97)	2009	
Ng 2010	7	14	5	14	8.2%	1.40 (0.58-3.36)	2010	
Tursi 2010	31	71	23	73	13.5%	1.39 (0.90-2.13)	2010	
Matthes 2010 Subtotal (95% CI)	20	46 241	3	11 202	6.9% 60.3%	1.59 (0.58-4.42) 1.80 (1.36-2.39)	2010	•
1.4.2 CD								
Malchow 1997	12	16	11	12	14.7%	0.82 (0.59-1.14)	1997	
Schultz 2004	4	5	5	6	11.7%	0.96 (0.55-1.69)	2004	
Steed 2010 Subtotal (95% CI)	13	19 40	11	16 34	13.2% 39.7%	1.00 (0.63-1.56) 0.89 (0.70-1.13)	2010	+
Total events	29		27					
Heterogeneity: $\tau^2 = 0$.00: $\chi^2 =$	0.59, d	f = 2 (P)	= 0.74); $l^2 = 0\%$			
Test for overall effect	Z = 0.94	4 (P = 0)).35)					
Total (95% CI)		281		236	100.0%	1.40 (0.99-1.98)		
Total events	142		79					
Heterogeneity: $\tau^2 = 0$.19; X ² =	27.20,	df = 9 (l)	^p = 0.0	01); l ² =	67%		
Test for overall effect	Z = 1.89	9 (P = 0)	.06)					Placebo Probiotics
Test for subgroup diff	ferences:	$\chi^2 = 13$.73. df =	= 1 (P =	0.0002	$1^2 = 92.7\%$		racebo rroblodes

Effect of probiotics on UC,CD and pouchitis - Meta-analysis of RCTs: IBD 2014

Which probiotic for inducing remission?

	Probio	tics	Cont	rol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
1.6.1 Bifidobacteria						(28) S		
Kato 2004	4	10	3	10	5.1%	1.33 (0.40-4.49)	2004	
Furrie 2005	5	9	3	9	5.9%	1.67 (0.56-4.97)	2005	
Subtotal (95% CI)		19		19	11.0%	1.51 (0.67-3.40)		-
Total events	9		б					
Heterogeneity: $\tau^2 = 0$.00; x ² =	0.07, d	f = 1 (P	= 0.79); $I^2 = 0\%$			
Test for overall effect	Z = 0.99	P = 0).32)					
1.6.2 E coli								
Rembacken 1999	39	57	44	59	19.6%	0.92 (0.73-1.16)	1999	-
Matthes 2010	20	46	3	11	6.6%	1.59 (0.58-4.42)	2010	
Subtotal (95% CI)		103		70	26.1%	0.99 (0.67-1.46)		*
Total events	59		47					
Heterogeneity: $\tau^2 = 0$.03: x ² =	1.22. 6	f = 1 (P)	= 0.27	$ ^2 = 18$	%		
Test for overall effect	Z = 0.07	7 (P = 0)	.95)	C = 205224-0		42		
1 6 2 1/61 #2			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
1.0.5 VSL#5	2.2	20		50	30.00	1 20 /0 00 1 20	2004	1.00
Tursi 2004	24	30	37	60	18.9%	1.30 (0.99-1.70)	2004	
Miele 2009	33	11	11	70	12.1%	2.73 (1.50-4.97)	2009	
2000 2009	31	/1	23	/3	15.5%	1.39 (0.90-2.13)	2009	-
Ng 2010	13	14	4	15	8.3%	3.48 (1.49-8.10)	2010	
Subtotal (95% CI)	1	206	2	232	67.8%	1.40 (0.58-3.36)	2010	
Total quants	109	200	80	232	02.070	1.74 (1.13-2.33)		•
Hotoropopolity $r^2 = 0$	10: 12-	10.10	df - d /	P - 0.0	A): 12 - 6	0%		
Test for everall offect	7 - 7 - 7	10.10,	$u_1 = 4 ($	-= 0.0	4), 1 = 0	0.0		
rest for overall effect.	2 = 2.80	5 (P = (.004)					
Total (95% CI)		328		321	100.0%	1.51 (1.10-2.06)		•
Total events	176		133					200
Heterogeneity: $\tau^2 = 0$.12; χ ² =	22.79,	df = 8 (d)	P = 0.0	$(04); I^2 =$	65%		b 01 01 1 10
Test for overall effect	Z = 2.58	s(P = 0)).010)					0.01 0.1 1 10 Control Prohistics
Test for subgroup diff	ferences:	$\chi^2 = 4.$	27. df =	2(P =	0.12), I ²	= 53.1%		Consol Problotics

Effect of probiotics on UC,CD and pouchitis – Meta-analysis of RCTs: IBD 2014

Can probiotics maintain remission of IBD? (clinical relapse)

	Probio	tics	Conti	lo		Risk Ratio		Risk Ratio
tudy or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
.2.1 UC								
ruis 1997	8	50	6	53	5.8%	1.41 (0.53-3.79)	1997	
embacken 1999	26	39	32	44	12.8%	0.92 (0.69-1.22)	1999	
ruis 2004	40	162	38	165	11.7%	1.07 (0.73-1.58)	2004	+
occo 2006	20	127	12	60	8.8%	0.79 (0.41-1.50)	2006	
liele 2009	3	14	11	15	5.3%	0.29 (0.10-0.83)	2009	
ubtotal (95% CI)		392		337	44.4%	0.89 (0.66-1.21)		•
otal events	97		99					
leterogeneity: $\tau^2 = 0$.	.04; $\chi^2 = 6$	6.15, d	f = 4 (P)	= 0.19); $1^2 = 35!$	%		
est for overall effect	: Z = 0.73	(P = 0)).47)					
.2.2 CD								
lalchow 1997	4	12	7	11	6.3%	0.52 (0.21-1.31)	1997	
rantera 2002	3	15	2	17	2.8%	1.70 (0.33-8.84)	2002	
chultz 2004	2	4	3	5	4.4%	0.83 (0.25-2.80)	2004	
ousvaros 2005	12	39	6	36	6.7%	1.85 (0.77-4.40)	2005	
larteau 2006	4	48	3	50	3.4%	1.39 (0.33-5.88)	2006	
an Gossum 2007	4	34	3	36	3.5%	1.41 (0.34-5.85)	2007	
teed 2010	1	13	1	11	1.2%	0.85 (0.05-12.01)	2010	
ubtotal (95% CI)		165		166	28.2%	1.09 (0.69-1.74)		•
otal events	30		25					0.27
leterogeneity: $\tau^2 = 0$.	.00; $\chi^2 = 4$	4.74, d	f = 6 (P)	= 0.58); $ ^2 = 0\%$			
est for overall effect:	Z = 0.38	P = 0).71)					
.2.3 Pouchitis								
ionchetti 2000	3	20	20	20	6.0%	0.17 (0.07-0.45)	2000	
ionchetti 2003	2	20	8	20	3.5%	0.25 (0.06-1.03)	2003	
limura 2004	3	20	15	16	5.3%	0.16 (0.06-0.46)	2004	
/ildt 2011	15	20	11	12	12.6%	0.82 (0.60-1.11)	2011	-8-
ubtotal (95% CI)		80		68	27.4%	0.28 (0.06-1.27)		
otal events	23		54					
leterogeneity: $\tau^2 = 2$.	.09; X ² = 3	37.88,	df = 3 (P	< 0.0	0001); l ^z	= 92%		
est for overall effect:	Z = 1.65	(P = 0)).10)					
otal (95% CI)		637		571	100.0%	0.73 (0.54-0.99)		•
otal events	150		178					
leterogeneity: $\tau^2 = 0$.	.17; $\chi^2 = 3$	36.52.	df = 15	P = 0.	$001); I^2 =$	59%		ton du the
	COULD AND A DOWN	Contraction of the second		and the second second	CALL OF CALL			0.01 0.1 1 10

Which probiotic for maintaining remission in UC?

	Probio	tics	Cont	rol		Risk Ratio			Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H,	Random, 95% CI
2.2.1 E coli									
Kruis 1997	8	50	6	53	8.0%	1.41 (0.53-3.79)	1997		
Rembacken 1999	26	39	32	44	38.9%	0.92 (0.69-1.22)	1999		+
Kruis 2004	40	162	38	165	30.0%	1.07 (0.73-1.58)	2004		-
Subtotal (95% CI)		251		262	77.0%	0.99 (0.79-1.24)			+
Total events	74		76						
Heterogeneity: $\tau^2 = 0$.	.00; X ² = 3	1.11, d	f = 2 (P)	= 0.57)	$ ^2 = 0\%$				
Test for overall effect	Z = 0.11	(P = 0)).92)						
2.2.2 Lactobacillus									
Zocco 2006	20	127	12	60	15.8%	0.79 (0.41-1.50)	2006		
Subtotal (95% CI)		127		60	15.8%	0.79 (0.41-1.50)			•
Total events	20		12						
Heterogeneity: Not ap	plicable								
Test for overall effect	: Z = 0.72	(P = 0)	.47)						
2.2.3 VSL#3									
Miele 2009	3	14	11	15	7.2%	0.29 (0.10-0.83)	2009	_	
Subtotal (95% CI)		14		15	7.2%	0.29 (0.10-0.83)		-	
Total events	3		11						
Heterogeneity: Not ap	plicable								
Test for overall effect:	: Z = 2.30	(P = 0)	.02)						
	11024250194342		-Contrato						
Total (95% CI)		392		337	100.0%	0.89 (0.66-1.21)			•
Total events	97		99		1.10				23
Heterogeneity: $\tau^2 = 0$.	.04; X ² =	6.15, 0	If = 4 (P)	= 0.19); $1^2 = 35$	%		0.01 01	1 15
Test for overall effect:	Z = 0.73	(P = 0)),47)					Prob	iotics Control
Test for subgroup diff	ferences:	X = 5.	21, df =	2(P =	0.07), 12	= 61.6%			and an in the

Effect of probiotics on UC,CD and pouchitis – Meta-analysis of RCTs: IBD 2014

Which probiotic for maintaining remission of *UC pouchitis*?

	Probio	tics	Cont	rol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% CI
2.4.1 Bifidobacteria Wildt 2011 Subtotal (95% CI)	15	20 20	11	12 12	27.7% 27.7%	0.82 (0.60-1.11) 0.82 (0.60-1.11)	2011	-
Total events Heterogeneity: Not ap Test for overall effect:	15 plicable Z = 1.29) (P = 0	11 (.20)					65.0
2.4.2 VSL#3								
Gionchetti 2000	3	20	20	20	25.2%	0.17 (0.07-0.45)	2000	
Gionchetti 2003	2	20	8	20	22.4%	0.25 (0.06-1.03)	2003	
Mimura 2004 Subtotal (95% CI)	3	20 60	15	16 56	24.7% 72.3%	0.16 (0.06-0.46) 0.18 (0.10-0.34)	2004	•
Total events	, 8		43					
Heterogeneity: $\tau^2 = 0$. Test for overall effect:	X' = 0 Z = 5.30	0.27, d) (P < 0	f = 2 (P)	= 0.88); 1 ² = 0%			
Total (95% CI)		80		68	100.0%	0.28 (0.06-1.27)		-
Total events Heterogeneity: $\tau^2 = 2$. Test for overall effect: Test for subgroup diff	23 09: X ² = 3 Z = 1.65 ferences:	37.88, (P = 0) $\chi^2 = 17$	54 df = 3 (#).10) 7.81. df	P < 0.00	0001); l² < 0.0001	= 92%), l ² = 94.4%		0.01 0.1 1 10 1 Probiotics Control

Effect of probiotics on UC,CD and pouchitis - Meta-analysis of RCTs: IBD 2014

Probiotics in IBD – What Works?

- 1. Ulcerative Colitis NOT Crohn's Dis.
- 2. Increase remission rates (RR=1.51)
- 3. Trend to preventing relapse (maintenance)
- 4. VSL#3
 - 1. Induction (RR=1.74)
 - 2. Maintenance clinical relapse (RR=0.18)
 - 3. Pouchitis most pronounced effect

Effect of probiotics on UC,CD and pouchitis – Meta-analysis of RCTs: IBD 2014

IBD and Microbiota CAM

Irritable Bowel Syndrome

Recurrent abdominal pain, on average, at least 1 day per week in the last 3 months, associated with 2 or more of the following criteria:

- 1. Related to defecation
- 2. Associated with a change in frequency of stool
- 3. Associated with a change in form (appearance) of stool

^{*a*}Criteria fulfilled for the last 3 months with symptom onset at least 6 months before diagnosis.

Elsenbruch S. Brain, Behavior & Immunity 2011;25:386-94

The case for a microbiota-IBS link

Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis

L-H Wang, X-C Fang, G-Z Pan

Gut 2004;53:1096-1101. doi: 10.1136/gut.2003.021154

INFLAMMATION AND MOTILITY

Increased rectal mucosal expression of interleukin 1β in recently acquired post-infectious irritable bowel syndrome

K-A Gwee, S M Collins, N W Read, A Rajnakova, Y Deng, J C Graham, M W McKendrick, S M Moochhala

INE-IBS INE-CON 25L-1 B m RNA: B-actin 20(×10⁻²) 15 10 Ô During Post During Post infection infection. infection infection. Table 1 Effect of duration of bacillary dysentery on the incidence of functional bowel disorders (FBD)

Duration (days)	n	FBD cases (%)	OR	95% CI
0-7	125	13 (10.40)	1.00	
8-14	104	30 (31.18)**	3.49	1.71-7.13
≥15	66	23 (34.85)**	4.61	2.14-9.91

Prolongation of the duration of BD over seven days significantly increased the incidence of FBD ("p<0.01). FBD includes: IBS, n=24; functional diarrhoea, n=18; functional abdominal bloating, n=17; functional constipation, n=4; and unspecified functional bowel disorder, n=3. OR, odds ratio; 95% Cl, 95% confidence interval.

Do IBS pts have a different microbiome?

Study	Subject	Sample	Method	Patient group	Main finding	Country of study
Balsari ef al ⁹⁶	IBS (n-20) Ctrls (n-20)	Faeces	Culture	IBS	1 Coliform bacteria 1 Lactobaci/lus spp.	Italy
Si et al ^{an}	IBS (n=25) Ctrls (n=25)	Faeces	Culture	IBS	Endobacterium spp. Enterobacteriume Constitutionen	China
Malinen et al ⁹⁹	iBS (n=27) Ctris (n=22)	Faeces	qPCR	ibs ibs-d	1 B catenulatum 1 Cl coccides group 1 Lactobacillus spp.	Finland
				IBS-C	† Veillonella spp. † Lactobacillus spp.	
Māttō et al ¹⁰⁰	IBS (n=26) Ctrls (n=25)	Faeces	Culture PCR-DGGE	IBS	Coliform bacteria Aerob to anaerob ratio Tompord stability	Finland
Maukonen et al ¹⁰¹	IBS (n=24) Ctris (n=16)	Faeces	PCR-DGGE	IBS	1 Temporal stability	Finland
			Affinity capture	IBS-C	1 Cl coccoldes group	
Kassinen et al ⁶⁰²	IBS (n=24) Ctris (n=23)	Faeces	GC-profiling + sequencing of 16S rRNA genes gPCR	IBS	Collinselle aerofaciens Crocelaatum Coprococcus extractus Sciences, eff. (D. C. M)	Finland
Rajilić-Stojanović ³⁴⁸	IBS (n=20) Ctris (n=20)	Faeces	Microarray	IBS	Proteobacteria and specific Firmicutes 1 Other Firmicutes, Bacteroidetes and bifidobacteria	Finland
Kerckhoffs et av ¹⁰⁴	IBS (n=41) Ctris (n=26)	Faeces Duodenal mucosa	FISH OPCB	IBS	Bilidobacterium spp. B catemologium	The Netherlands
Krogius-Kurikka et al ¹⁰⁵	(BS-D (n=10) Ctrls (n=23)	Faeces	GC-profiling + sequencing of 16S rRNA genes	IBS-D	Proteobacteria Firmicutes Actinobacteria Bacteria	Finland
Lyra et al ¹⁰⁸	IBS (n=20) Ctris (n=15)	Faeces	o₽CR	IBS-D IBS-C	R tonques 94% C/ thermosuccinogenes 85% Shomil-like	Finland
				IBS-A	R torques 93%	
Tana et al ¹⁰⁷	IBS (n=26) Ctrls (n=26)	Faeces	Culture	IBS	† Cl thermosuccinogenes 85% † Veillonelle spp.	Japan
Codling at ar ^{ice}	IBS (n=41) Ctris (n=33)	Faeces Colonic mucosa	oper PCR-DGGE	IBS	† Lactobacillus spp. † Temporal stability No significant difference	Ireland
Carroll et al ²⁸	IBS-0 (n=10) Ctris (n=10)	Faeces Coloris biogenes	Culture	18S-0	1 Aerobic bacteria Lactobacillur spp.	USA
Noor et al ¹⁰⁹	IBS (n=11) Ctrls (n=22) UC (n=13)	Faeces	PCR-DGGE + sequencing of 16S rRNA genes	IBŚ	Bacterial species Biodiversity	ЦΚ
Malinen et al ¹¹⁰	IBS (n=44)	Faeces	qPCR		Boogcal variability of predominant bacteria R torques 94% symptom severity Other phylothese and percent	Finland
Ponnusamy et al ¹¹¹	IBS (n=11) Ctris (n=8)	Faeces	DGGE + qPCR of 16sRNA genes		1 Diversity in Bactaroidetes & Lactobacilii Alanine & pyroglutamic acid & phenolic compounds	Колва
Binttila et el ¹¹²	IBS (n=96) Ctris (n=23)	Faeces	dPCR	IBS	S aurous (17%)	Finland
Saulnier et al ¹¹³	IBS (n=22) Ctrls (n=22) (Children)	Faeces	16s Metagenomic sequencing and DNA microarray	IBS	↑ γ Proteobacteria Classified IBS subtypes using sets of discriminant bacterial species	USA
Rajilic-Stojanovic et al ¹¹⁴	IBS (n=62) Ctrls (n=42)	Faeces	Phylogenetic 16S rRNA microarray and gPCR	IBS	Proteobacteria and specific Firmicutes Other Firmicutes, Bacteroidetes and bifidobacteria	Finland

Simren et al. Intestinal Microflora in FBD: A Rome foundation Report. Gut 2014

Probiotic Intervention	No. of Studies Ref	No. of Patients	Intervention Duration	Study Outcome	Recommenda- tion†/‡
Single probiotics LGG	1.*Bausserman and Michail ²²	50	6 wk	No benefit over placebo	
	2.*Gawronska et al ²³	104	4 wk	Reduction in abdominal pain in IBS not in FAP or FD	B/C (in children)
	3.*Francavilla et al24	141	8 wk	Reduction in abdominal pain	
VSL#3	1. Kim et al ²⁸	25	8 wk	Reduction in bloating or symptoms No significant change in gut transit	
	2. Kim et al ²⁹	48	4/8 wk	Significant reduction in flatulence and slower transit	С
	3.*Guandalini et al ²⁵	59	6 wk	Improvement of IBS symptoms	C (in children)
B. infantis 35624	1. O'Mahony et al ¹⁶	77	8 wk	Reduction in abdominal pain, bloating, bowel satisfaction, and composite score	B/C
B. infantis 35624	2. Whorwell et al ¹⁹	362	4 wk	Improvement in IBS symptoms and IBS global assessment score for 1 × 10 ⁸	
L. Plantarum (DSM 9843)	1. Nobaek et al ³⁰	60	4 wk	Reduction in flatulence	С
L. Plantarym 299V	1. Niedzielin et al ³¹	40	4 wk	Resolution of pain	С
L. reuteri ATCC 55730	1. Niv et al ³²	54	6mo	No benefit over placebo	
B. animalis DN 173010	1. Guyonnet et al ³³	274	6 wk	No benefit over placebo. Subanalysis (n = 19) increase in stools frequency.	С
Bacillus coagulans GBI-30, 6086	1. Dolin ³⁴	55	8 wk	Reduction in number of BM per day	С
Synbiotic					
Lactobacillus paracasei B21060 with prebiotics vs. prebiotics	1. Andriulli et al ³³	135	12 wk	No benefit of synbiotic over prebiotic. Significant reduction in BM, pain, IBS Score in D-IBS (n = 47)	С
LGG, L. rhannosus LC705,	1. Kajanda et al ²⁰	103	6mo	Reduction in total symptom	
Propionibacterium freudenreichii spp shermanii JS	2. Kajanda et al ²¹	86	5mo	Reduction in GSS	\mathbf{B}/\mathbf{C}
L. acidophilus SDC 2012 and	1. Sinn et al ³⁶	40	2 wk	Reduction in abdominal pain	С
B. longum LA 101, Lb. acidophilus LA 102, L. lactis LA 103 and S. thermophilus LA 104	1. Drouault- Holowacz et al ³⁷	100	4 wk	No benefit over placebo. Some benefit in subgroup analysis	С
E. coli (DSM 17252) and En. faecalis (DSM 16440)	 Enck et al³⁸ Enck et al³⁹ 	297	8 wk	Reduction in GSS by 50% Reanalysis of previous data	С
Lactobacillus acidophilus CUL60 (NCIMB 30157) and CUL21 (NCIMB 30156), Bifidobacterium lactis CUL34 (NCIMB 30172)	1. Williams et al ⁴⁰	52	8 wk	Significant reduction in Symptom severity score	С
L. paracasei, ssp. paracasei F19, L. acidophilus La5 and B. lactis Bb12	1. Simrén et al ⁴¹	74	8 wk	No benefit over placebo	
L. acidophilus NCFM and B. lactis Bi-07	 Ringel-Kulka et al⁴² 	60	8 wk	Significant reduction in bloating	С

TABLE 1. Important Randomized Controlled Trials Investigating Probiotics Vs. Placebo in IBS

*Study done in children.

†Recommendation is based on: A = strong, positive, well-conducted, controlled studies in the primary literature, not abstract form; B = some positive, controlled studies but presence of some negative studies or inadequate amount of work to establish the certainty; C = some positive studies but clearly inadequate amount of work to establish the certainty of "A" or "B."

Recommendations relate to the specific strains that were tested and reported to be effective. B indicates Bifidobacretium; BM, bowel movements; E, Escherichia; En, Enterococcus; FAP, functional abdominal pain; FD, functional dyspepsia; GSS, global symptom score; IBS, irritable bowel syndrome; L, Lactobacillus.

	Pr	obiotics			Control			Std. mean difference		Std. mean difference
Study or subornin	Mean	e d	Total	Moon	e d	Total	Wainht	M random 95% Cl	Voor	BI modem DESt Of
1.2.1 Combination							100	No. 1995		
Kim, 2005	101.8	79,72	11	99.72	86.81	10	1.5%	0.02 [-0.83, 0.88]	2005	
Kajander, 2005	20.4	13.88	41	26.8	13.88	40	4.6%	-0.46 [-0.90, -0.02]	2005	
Kim, 2005	102.4	47.03	24	125.3	52.79	24	3.1%	-0.45 [-1.02, 0.12]	2005	
Kim, 2006	1.6	1.6	17	1.8	2.1	17	2.4%	-0.10 [-0.78, 0.57]	2006	
Guyonnet, 2007	5.07	1.14	135	5.22	1.26	132	9,3%	-0.12 [-0.36, 0.12]	2007	-
Zeng, 2008	7.64	1.24	14	9.18	1.48	15	1.8%	-1.09 [-1.88, -0.30]	2008	1777 TO 1
Drouault-Holowacz, 2008	2.71	2.16	48	3.34	2.24	52	5.4%	-0.28 [-0.68, 0.11]	2008	
Kajander, 2008	24	16,73	43	30	18.01	43	4.8%	-0.34 [-0.77, 0.08]	2008	
Williams, 2009	150.23	101.96	28	172	99.51	24	3.3%	-0.21 [-0.76, 0.33]	2009	61.00 ⁻⁰
Agrawal, 2009	2.9	0.9	17	3.7	0.9	15	2.0%	-0.87 [-1.60, -0.14]	2009	
Simren, 2010	206	113	33	228	125	34	4.1%	-0.18 [-0.66, 0.30]	2010	10.000
Sondergaard, 2011	176	138	27	206	124	25	3.3%	-0.22 [-0.77, 0.32]	2011	50 CT 10
Michail, 2011	1.5	0.3	15	1.7	0.8	9	1.6%	-0.36 [-1.19, 0.48]	2011	
Cha, 2012	1.56	1.21	24	1.97	1.65	23	3.1%	-0.28 [-0.85, 0.30]	2012	
Begtrup, 2013	2.9	1.1	54	2.8	1	44	5.3%	0.09 [-0.30, 0.49]	2013	+-
Subtotal (95% Cl)			531			507	55.8%	-0.24 [-0.37, -0.12]		•
Heterogeneity: $t^2 = 0.00$; $\chi^2 = 1$	13.30, df = 1	4 (P= 0.5	0); / ² =	0%						n.
Test for overall effect: Z = 3.90	(P.< 0.000)	0								
1.2.2 Ladobadilus										201200
Nobaek, 2000	3.9	1	25	4.26	1.67	27	3.3%	-0.26 [-0.80, 0.29]	2000	
Niv, 2005	270	139	21	230	139	18	2.6%	0.28 [-0.35, 0.91]	2005	
O'Mahony, 2005	5.25	2.8	26	5.68	2.8	25	3.3%	-0.15 [-0.70, 0.40]	2005	100 C
Simren, 2006	279	129	29	245	118	29	3.6%	0.27 [-0.25, 0.79]	2006	
Farup, 2012	6.18	1.83	9	5.61	1.31	7	1.2%	0.33 [-0.67, 1.33]	2012	
Ducrotte, 2012	0.68	0.53	105	0.92	0.57	99	8.2%	-0.43 [-0.71, -0.16]	2012	- -
Subtotal (95% Cl)			215			205	22.2%	-0.08 [-0.38, 0.21]		•
Heterogeneity: $\tau^2 = 0.06$; $\chi^2 = 9$	9.30, df = 5	(P=0.10);	$l^2 = 46^{\circ}$	%						
Test for overall effect: $Z = 0.54$	(P = 0.59)									
1.2.3 Bilidobacterium	1987	28/2/22	2583	0.000	5.53528	12.13	20.537		0.0844	
O'Mahony, 2005	3.7	2.68	24	5.68	2.8	25	3.0%	-0.69 [-1.26,- 0.11]	2005	
Whorwell, 2006	2.01	0.82	250	2.09	0.89	80	9.0%	-0.10 [-0.35, 0.16]	2006	4
Guglielmetti, 2011 Subtotal (95%, CD	2.07	0.85	60	2.63	0.74	62	5.9%	-0.70 [-1.07, -0.33]	2011	-
Heterogeneity: t ² = 0.12 · 2 ² = 8	3.70. df = 2	(P = 0.01):	12 = 77	%		107	10.0%	-0.40 [-0.82, -0.00]		
Test for overall effect: $Z = 1.97$	(P = 0.05)	10100000		933						
1.2.4 Saccharomyces										
Choi, 2011	1.2	0.8	34	1.3	0.8	33	4.1%	-0.12 [-0.60. 0.36]	2011	9 79 0
Subtotal (95% Cl)			34			33	4,1%	-0.12 [-0.60. 0.36]		-
Heterogeneity: Not applicable						12003	100000			1
Test for overall effect: $Z = 0.51$	(P = 0.61)									
Total (95% CI)			1114			912	100.0%	-0.25[-0.360.14]		
Heterogeneity: $\tau^2 = 0.02$: $\gamma^2 = 3$	2.74, df = 2	4 (P= 0.1	 <i>l</i>² = 	27%		1.00	2 mm (M (M))	and a set of a	5	<u></u>
Test for overall effect: $Z = 4.44$	(P < 0.000	01)		Constant of		Prohio	ics in IR9	S – Metaanalysis · A	IG 2014	-4 -2 0 2 4 Favors probiotics Favors control

"Do you feel better?" with B. Infantis

An alternative mechanism of action?

Melatonin Regulation as a Possible Mechanism for Probiotic (VSL#3) in Irritable Bowel Syndrome: A Randomized Double-Blinded Placebo Study

Reuben K. Wong · Cao Yang · Guang-Hui Song · Jennie Wong · Khek-Yu Ho

Melatonin Regulation as mechanism for VSL#3 : Dig Dis Sci 2015

FMT in IBS (3 months)

Country	Author	Subjects	N	Outcome	Results %	P-value
Belgian	Holovert	IBS (NC)	64	AR	49 vs. 29	0.004
USA	Aroniatis	IBS-D	48	IBS-SSS	48 vs. 63	0.32
Danish	Halkjaer	IBS	52	IBS-SSS	-	-

1st RCT for FMT in IBS

- Significance is the 1st study of FMT for a Functional Disorder
- Norwegian study 90 non-constipated
- RCT Donor stool vs. Autologus Transplant
- Results (>75 pt improvement in the IBS-SSS)
 - -65 vs 43% (p=0.049) 6 mths
 - 56 vs 36% (p=0.075) 12 mths

Hepatic Encephalopathy

Balancing the Ammonia load

Predisposing to HE

- Porto-systemic shunt
- Poor hepatic function
- Constipation
 - High protein load in diet GI bleed

Alleviating HE

- Diet modulation
- Laxatives (lactulose/PEG)
- Antibiotics (neomycin)

Alter intestinal protein metabolism... Re-condition the Intestinal Microflora !

Do probiotics have an effect on ammonia?

Probiotics improve outcomes of HE – Updated Meta-analysis: Clin Res Gastro Hepatol 2015

Effects of Probiotics on reducing adverse outcomes in HE

Agrawal 2012	21	77	28	78	33.3%	0.76 [0.47, 1.22]			
Bajaj 2008	0	17	2	8	4.0%	0.10 [0.01, 1.87]	+		
Bajaj 2014	1	18	3	19	3.5%	0.35 [0.04, 3.08]			-
Mittal 2011	3	40	6	40	7.2%	0.50 [0.13, 1.86]			-
Sharma 2014	0	32	3	30	4.3%	0.13 [0.01, 2.49]	←		
Subtotal (95% CI)		184		175	52.4%	0.59 [0.39, 0.90]		<	
Total events	25		42						
Heterogeneity: Chi ² = 3 Test for overall effect: Z	.75, df = 4 2 = 2.43 (P	(P = 0.44 = 0.02)); ² = 0º	%					
Heterogeneity: Chi ² = 3 Test for overall effect: Z	.75, df = 4 2 = 2.43 (P	(P = 0.44 = 0.02)); ² = 0º	%					
Heterogeneity: Chi ² = 3 Test for overall effect: Z	.75, df = 4 Z = 2.43 (P	(P = 0.44 = 0.02)); l² = 0º	%					
Heterogeneity: Chi ² = 3 Test for overall effect: Z 6.1.3 Mortality Agrawal 2012	.75, df = 4 2 = 2.43 (P	(P = 0.44 = 0.02) 77); l ² = 0 ⁴	78	19.1%	0 70 [0 35 1 40]			•
Heterogeneity: Chi ² = 3 Test for overall effect: Z 6.1.3 Mortality Agrawal 2012 Bajai 2008	.75, df = 4 2 = 2.43 (P 11 1	(P = 0.44 = 0.02) 77 17); l ² = 09	% 78 6	19.1% 0.9%	0.70 [0.35, 1.40] 1 17 [0 05 25 37]			-
Heterogeneity: Chi ² = 3 Test for overall effect: Z 6.1.3 Mortality Agrawal 2012 Bajaj 2008 Mittal 2011	.75, df = 4 2 = 2.43 (P 11 1 0	(P = 0.44 = 0.02) 77 17 40); l² = 0º 16 0 1	% 78 6 40	19.1% 0.9% 1.8%	0.70 [0.35, 1.40] 1.17 [0.05, 25.37] 0.33 [0.01, 7.95]	_		•
Heterogeneity: Chi ² = 3 Test for overall effect: Z 6.1.3 Mortality Agrawal 2012 Bajaj 2008 Mittal 2011 Sharma 2014	.75, df = 4 2 = 2.43 (P 11 1 0 1	(P = 0.44 = 0.02) 77 17 40 32); ² = 0 ⁴ 16 0 1 2	% 78 6 40 30	19.1% 0.9% 1.8% 2.5%	0.70 [0.35, 1.40] 1.17 [0.05, 25.37] 0.33 [0.01, 7.95] 0.47 [0.04, 4.91]			•
Heterogeneity: Chi ² = 3 Test for overall effect: Z 6.1.3 Mortality Agrawal 2012 Bajaj 2008 Mittal 2011 Sharma 2014 Subtotal (95% CI)	.75, df = 4 2 = 2.43 (P 11 1 0 1	(P = 0.44 = 0.02) 77 17 40 32 166); l ² = 0 ⁴ 16 0 1 2	78 6 40 30 154	19.1% 0.9% 1.8% 2.5% 24.2%	0.70 [0.35, 1.40] 1.17 [0.05, 25.37] 0.33 [0.01, 7.95] 0.47 [0.04, 4.91] 0.66 [0.35, 1.26]			•
Heterogeneity: Chi ² = 3 Test for overall effect: Z 6.1.3 Mortality Agrawal 2012 Bajaj 2008 Mittal 2011 Sharma 2014 Subtotal (95% CI) Total events	.75, df = 4 2 = 2.43 (P 11 1 0 1 13	(P = 0.44 = 0.02) 77 17 40 32 166); l ² = 0 ⁴ 16 0 1 2 19	78 6 40 30 154	19.1% 0.9% 1.8% 2.5% 24.2%	0.70 [0.35, 1.40] 1.17 [0.05, 25.37] 0.33 [0.01, 7.95] 0.47 [0.04, 4.91] 0.66 [0.35, 1.26]			•

Probiotics improve outcomes of HE – Updated Meta-analysis: Clin Res Gastro Hepatol 2015

Are probiotics the universal panacea?

- Acute Pancreatitis
- 152 multispecies probiotic vs placebo
- Immunomodulation and reduce systemic sepsis
- Infections 30% Pb vs. 28% Pl
- 2.53 RR of death in Pb group

Probiotic Prophylaxis in predicted severe acute pancreatitis: Lancet 2008

Reuben KM Wong

MBBS AGAF FRCP FAMS Associate Professor Gastroenterologist

Where Are We?

- Role of Microbiota in Gut disorders is firmly established
- Clear that we can manipulate microbiota for benefit
- Different Ways of doing so...
 - Antibiotics
 - Probiotics
 - Regime Change (FMT)

New Indications for Microbial Manipulation in chronic GID

- Distinct Microbial signature in BE (Yang et al. Gastro 2009)
- Progression to adenocarcinoma (Snider et al. DDW 2017)
 - Alpha diversity unchanged
 - Deceased Frimacutes and Increased Proteobacteria
 - Decreased Veillonella and Increased Streptomyces & Enterobacteria
- Oral Microbiome reflects Esophageal
- Chlorhexidine mouthwash alters flora

Ways to alter the microbiota

Seed & Soil Hypothesis

- Pro and Prebiotics synergistically
- Consistent long-term dosing?
- FMT
 - Too blunt
 - Regime Change

Prescription

 B Infantiis x 2 cap BD Tempeh x 2 servings FOS
SIGNATURE DEA.NO.

RESEARCH

Open Access

Way Forwards

Exposure to environmental microbiota explains persistent abdominal pain and irritable bowel syndrome after a major flood

NurFadhilah Yusof^{1†}, Nurhazwani Hamid^{1†}, Zheng Feel Ma^{1,2†}, Rona Marie Lawenko³, Wan Mohd Zahiruddin Wan Mohammad¹, Deirdre A, Collins⁴, Min Tze Liong⁵, Toshitaka Odamaki⁶, Jinzhong Xiao⁶ and Yeong Yeh Lee^{1*}

- More Asian based studies
 - Local ways of manipulating flora
- Bring Bench to Bedside
 - Murine studies into humans
 - Practically test in humans
- Practical Guidance
 - Guidelines galore
 - No good international ones crafted by scientists with clinicians
 - ISAPP

Reuben Wong mdcwkmr@nus.edu.sg