"Key Scientific Drivers Behind Probiotic and Prebiotic Applications"

International Symposium of the International Scientific Association of Probiotics and Prebiotics

June 5-6, 2018, Furama Riverfront Hotel, Singapore

Dietary Oat Bran and Probiotic Interaction in Polyunsaturated Fatty Acid and Oxylipin Metabolism

Jetty Chung-Yung LEE Hong Kong

Organised by:

SCIENTIFIC ASSOCIATION OF PROBIOTICS AND PREBIOTICS"

INTERNATIONAL

In affiliation with:

Singapore Society for Microbiology and Biotechnology Meeting Sponsors: Platinum

Silver

P&G

Conference Secretariat & Housing Bureau:

Dietary oat bran and probiotic interaction in polyunsaturated fatty acid and oxylipin metabolism

ISAPP, Singapore 2018

Jetty Chung-Yung Lee, Ph.D.

The University of Hong Kong, School of Biological Sciences

Oat bran

- Prebiotic
- 3-8g, 82% water-soluble
- β-glucan
- Linear, branched, degree of polymerization all determine solubility
- Only soluble ones can be fermented
- Fermented by bacterial β-glucosidase in gut
- Selectively proliferate gut bacteria
- PUFA n-6 and n-3
- Phytochemicals (antioxidant)
- Resist host digestion

Microscopic picture of the cross section of oat grain, stained with Calcofluor and Acid Fuchsin Sibakov et al., 2012

Oat β-glucan Mechanisms

Oat bran and heart disease

In 2012, CVD was the leading cause of NCD deaths (17.5 million). *Global Health Observatory , World Health Organisation

CVDs due to Atherosclerosis

Lattimer & Haub, Nutrients, 2010. 2: 1266.

Vascular Endothelial Dysfunction

Channon, Medicine, 2002. 30:54-58.

REVIEW

Dietary oats and modulation of atherogenic pathways

Kristina E. Andersson and Per Hellstrand

Department of Experimental Medical Science, Lund University, Lund, Sweden

sterol re-absorption

Oat bran fractionation methods

Oxylipins (lipid mediators) of PUFAs

LC-MS/MS

Summary

- Oat bran only reduced plaque and did not improve lipid profile or endothelial function;
- PUFA in oat bran modified PUFA liver and heart;
- Anti-inflammatory lipid mediators are suppressed and proinflammatory elevated;
- Gut phylum suggest HFD with oat bran reduced short-fatty acid production.
- The fibre in oat bran may help in cholesterol metabolism and not PUFA metabolism.

HFD and Metabolic Disorders

HFD and NAFLD

- Non-alcoholic fatty liver disease (NAFLD) a range of hepatic complications
- Mainly attributed to metabolic syndrome and obesity

Probiotics

Probiotic Health Benefits	Possible Mechanisms
Immune modulation	T-cell numbers and activity levels
Immunity 1	ennancement
Inflammation $$	promote anti-inflammatory cytokine production
Nutrient value 1	Vitamin and co-factor production
Cancer risk ↓	Detoxification of carcinogenic metabolites
Atopic allergy symptoms $\ \downarrow$	Suppression of hypersensitivity
Dietary intolerance \downarrow	Catabolism of dietary ingredients
Gastrointestinal disorder or dysfunction \downarrow	Not defined
Pathogen burden \downarrow	Competitive exclusion Direct antagonism

Lactobacillus Rhamnosus GG

- *In vitro* modulation of healthy human immune cells
- *In vivo* modulation of intestinal barrier and immunity in mice exposed to selected mycotoxins
- *In vivo* reduction of tumor growth through immunomodulation and inhibition of angiogenesis

Summary

- Synbiotic diet did not enhance essential PUFA;
- Synbiotic diet reduced lipid mediators related to inflammation;
- Not all anti-inflammatory mediators were elevated by symbiotic diet.
- The two studies indicate probiotic, prebiotic and synbiotic interposition in HFD diets are not favourable in the regulation of PUFA and its mediators.

Acknowledgements

School of Biological Sciences, HKU Dr. Hani El-Nezami Dr. Dalal Samir AlGhawas Dr. Sam K.S. Leung Zuzanna Ostroskwa Yu Fung Yau

Institute of Public Health and Clinical Nutrition, Food and Health Research Centre, University of Eastern Finland & VTT Technical Research Center of Finland **Dr. Kaisa Poutanen**

Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Université de Montpellier Dr. Thierry Durand Dr. Jean-Marie Galano Dr. Camille Oger

